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Preface

In these two chapters we take the next step toward our eventual goal of describing a
mathematically rigorous model of the quantized Klein-Gordon field. It will come as
no surprise that one does not construct the quantization of a classical physical sys-
tem without understanding that classical system rather well and that, if the quantiza-
tion is to lay any claims to mathematical rigor, the same must be true of the classical
system. Classical mechanical systems admit rigorous descriptions within the con-
text of symplectic geometry and here we will extend this Hamiltonian view of me-
chanics to classical scalar field theory and, more particularly, to the Klein-Gordon
field. This extension requires a rather substantial amping-up of the mathematical
pre-requisites, due in large measure to the fact that the phase space is necessarily
infinite-dimensional. We will try to address these pre-requisites in Chapter 1 by
briefly reviewing the di↵erential calculus on Banach spaces and the Euler-Lagrange
equations for real-valued functions on Banach spaces and also in two Appendices.
Appendix A provides a synopsis of tempered distributions, Sobolev spaces, and
Fourier transforms, while Appendix B contains a brief summary of those parts of
the Hille-Yosida theory of semigroups of operators that we will need to call upon.

The heart of the material is in Chapter 2. Here we view the Klein-Gordon equa-
tion as the Euler-Lagrange equation for a certain Lagrangian on Minkowski space-
time and carefully discuss the sense in which it is relativistically invariant (Section
2.1.1). A version of Noether’s Theorem is derived with which one can write out
a number of associated conservation laws for Klein-Gordon fields (Section 2.1.2).
In Section 2.2 we go to some lengths to carefully derive both smooth and distribu-
tional solutions to the Klein-Gordon equation and, in particular, to trace the origin
of formulas one finds in the physics literature such as

'(t, x) =
1

(2⇡)3/2

Z

R3

1
2!p

�
ei(!pt�p·x) a(p) + e�i(!pt�p·x) a(p)

�
d3p.

Real and complex solutions are treated separately because they have di↵erent phys-
ical interpretations and we try to explain why this is the case in Section 2.3. Finally,
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in Section 2.4 we motivate and then define infinite-dimensional Hamiltonian sys-
tems and show that Klein-Gordon can be interpreted as such a system.
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Chapter 1
Classical Scalar Fields

1.1 Di↵erential Calculus on Banach Spaces

In this section we will lay the foundation required to extend the Lagrangian and
Hamiltonian pictures of classical mechanics (Sections 2.2 and 2.3 of [Nab5] or Ap-
pendices A.2 and A.3 of [Nab6]) to field theory. Our basic reference for this material
is Chapters 2 and 6 of [AMR], but there are many other sources as well, for exam-
ple, [Lang4] and [Car2]. Since most of the results and many of the proofs are very
much like their finite-dimensional counterparts (as in, say, [Sp1]), we will be rela-
tively brief. A concise review of the required material on Banach spaces is available
in Sections 2.1 and 2.2 of [AMR].

We begin by establishing some notation and terminology. E and F are Banach
spaces (both over R or both over C), U ✓ E is an open set, f : U ✓ E ! F a
mapping, and u0 2 U. Norms on the Banach spaces will be denoted k kE, k kF, or
simply k k if this will cause no confusion. Then f is (Fréchet) di↵erentiable at u0 if
there is a necessarily unique (see page 68 of [AMR]) bounded linear map D f (u0) :
E ! F such that, for every ✏ > 0 there exists a � > 0 such that 0 < ku � u0kE < �
implies

k f (u) � f (u0) � D f (u0) · (u � u0) kF
k u � u0 kE

< ✏,

where we use D f (u0) · (u � u0) to indicate the value of D f (u0) at u � u0. In other
words,

lim
u!u0

f (u) � f (u0) � D f (u0) · (u � u0)
k u � u0 kE

= 0.

In this case, D f (u0) is called the (Fréchet) derivative of f at u0. Not unexpectedly,
the Fréchet derivative of a bounded linear operator is that same linear operator at
each point.
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2 1 Classical Scalar Fields

Exercise 1.1.1. Let f : E ! F be a bounded linear operator and let u0 2 E be
arbitrary. Prove that D f (u0) = f .

To get something a bit more interesting we will compute the Fréchet derivative
of a nonlinear integral operator.

Example 1.1.1. We let E = F = C0[a, b] be the Banach space of continuous (real-
or complex-valued) functions on [a, b] with the sup-norm k k = k k1 so that, for
any u 2 C0[a, b], kuk = maxaxb |u(x)|. Let K : [a, b] ⇥ [a, b] ! R be an arbitrary
continuous function. Define f : C0[a, b]! C0[a, b] by

f (u)(x) = u(x)
Z b

a
K(x, t) u(t) dt

for all u 2 C[a, b] and all x 2 [a, b]. Thus, for any fixed u0 2 C0[a, b],

f (u)(x) � f (u0)(x) = u(x)
Z b

a
K(x, t) u(t) dt � u0(x)

Z b

a
K(x, t) u0(t) dt.

Now write this as

f (u)(x) � f (u0)(x) �

u0(x)

Z b

a
K(x, t) (u(t) � u0(t)) dt

+ (u(x) � u0(x))
Z b

a
K(x, t) u0(t) dt

�

= (u(x) � u0(x))
Z b

a
K(x, t) (u(t) � u0(t)) dt. (1.1)

But if we let M be the maximum value of K(x, t) on [a, b] ⇥ [a, b] then
����� (u(x) � u0(x))

Z b

a
K(x, t) (u(t) � u0(t)) dt

�����  M (b � a) ku � u0k2.

Since

M (b � a) ku � u0k2
ku � u0k

= M (b � a) ku � u0k ! 0

as u! u0 in C0[a, b] and since

u0(x)
Z b

a
K(x, t) v(t) dt + v(x)

Z b

a
K(x, t) u0(t) dt

is linear in v, we conclude from (1.1) that the value of D f (u0) at any displacement
vector u � u0 is given, at each x 2 [a, b], by
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⇥
D f (u0) · (u � u0)

⇤
(x) =u0(x)

Z b

a
K(x, t) (u(t) � u0(t)) dt

+ (u(x) � u0(x))
Z b

a
K(x, t) u0(t) dt. (1.2)

Now let’s get back to the general development. If f is di↵erentiable at every
u 2 U, then it defines a map

D f : U ! L(E,F)

from U to the Banach space L(E,F) of bounded linear maps from E to F given by

u! D f (u).

D f is then called the (Fréchet) derivative of f on U and f is said to be (Fréchet)
di↵erentiable on U.

Remark 1.1.1. Recall that the norm of an element A 2 L(E,F) is defined by

kAkL(E,F) = sup
⇢ kAekF
kekE

: e 2 E, e , 0
�
= sup

� kAekF : e 2 E, kekE = 1
 

(Proposition 2.2.4 of [AMR]).

In this case, f is necessarily continuous and, in fact, locally Lipschitz on U (that
is, for each u0 in U there exist constants M0 > 0 and �0 > 0 such that u 2 U and
ku � u0kE < �0 implies k f (u) � f (u0)kF  M0 ku � u0kE); see Proposition 2.4.1 of
[AMR]. If the space L(E,F) is given its norm topology and if D f is a continuous
map, then f is said to be continuously di↵erentiable or C1 on U.

Remark 1.1.2. Unless it is likely to cause some confusion we will henceforth tend
to drop the subscripts on k k and leave it to the context to indicate which Banach
space is intended.

One defines higher order (Fréchet) derivatives in the following way. First recall
that if E1 and E2 are two Banach spaces, then the product E1 ⇥ E2 of E1 and E2 is
the Banach space consisting of all ordered pairs (e1, e2) of elements ei 2 Ei, i = 1, 2,
with norm k(e1, e2)k2 = ke1k2 + ke2k2. E1 ⇥ E2 is also often called the direct sum
of E1 and E2 and denoted E1 � E2. Larger (finite) products/sums are defined in the
obvious way by induction. A map M : E1 ⇥ · · · ⇥ Ek ! F is k-multilinear if it is
linear in each variable separately and the linear space of all such is a Banach space
with norm defined by

kMk = sup
⇢ kM(e1, . . . , ek)k
ke1k · · · kekk

: e1, . . . , ek , 0
�

= sup
� kM(e1, · · · , ek)k : ke1k = · · · kekk = 1

 
.
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If E1 = · · · = Ek = E we will write this Banach space Lk(E,F).
Now observe that there is a natural isometric isomorphism from the Banach space

L(E, L(E,F)) of bounded linear maps from E to L(E,F) onto the Banach space
L2(E,F) of bounded bilinear maps E ⇥ E! F given by

A 2 L(E, L(E,F))! Ã 2 L2(E,F),

where

Ã(e1, e2) = (A(e1))(e2)

(Proposition 2.2.9 of [AMR]).
Now suppose that D f : U ✓ E ! L(E,F) is di↵erentiable at every u 2 U. Then

D(D f ) : U ! L(E, L(E,F)). Identifying L(E, L(E,F)) with L2(E,F) we obtain the
second (Fréchet) derivative of f , denoted

D2 f : U ✓ E! L2(E,F).

Exercise 1.1.2. Let f : E! F be a bounded linear operator. Show that

(D2 f (e))(e1, e2) = f (e2)

for all e 2 E and all (e1, e2) 2 E ⇥ E.

If D2 f exists and is norm continuous, then f is twice continuously di↵erentiable
or C2 on U. Continuing inductively we obtain, for any k � 2,

Dk f = D(Dk�1 f ) : U ✓ E! Lk(E,F)

if it exists (here D1 = D). If Dk f exists and is norm continuous, then f is said to be
k-times continuously di↵erentiable or Ck on U. By convention, f : U ✓ E ! F is
C0 if it is continuous on U. If f is Ck for every k � 0, then it is C1, or smooth.

As in the finite-dimensional case, Fréchet derivatives are often more conveniently
thought of in terms of directional derivatives. The following is Proposition 2.4.6 of
[AMR].

Theorem 1.1.1. If f : U ✓ E ! F is di↵erentiable at u 2 U, then, for any e 2 E,
the directional derivative of f at u in the direction e, defined by

d
d"

f (u + "e)
���
"=0 = lim

"!0

f (u + "e) � f (u)
"

, (1.3)

exists and is given by

d
d"

f (u + "e)
���
"=0 = D f (u) · e. (1.4)
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Exercise 1.1.3. Compute d
d" f (u0+"(u�u0))

���
"=0 for the integral operator in Example

1.1.1 and thereby obtain another proof of (1.2).

Thus, a function that is di↵erentiable at u has directional derivatives in every
direction at u. The converse is not true, however. Counterexamples exist even in
elementary calculus. Exercise 2.4-9 of [AMR] o↵ers the following. The function
f : R2 ! R defined by

f (x, y) =

8>><
>>:

2x2y
x4+y2 if (x, y) , (0, 0);

0 if (x, y) = (0, 0)

is continuous everywhere except the origin so it is not Fréchet di↵erentiable at (0, 0),
but all of its directional derivatives exist at (0, 0).

Exercise 1.1.4. If you have never checked anything like this before, do so now.

A function f : U ✓ E ! F for which the directional derivative d
d" f (u + "e)

���
"=0

exists for every e 2 E is said to be Gâteaux di↵erentiable at u. If f is di↵erentiable
at u, then it is Gâteaux di↵erentiable at u, but not conversely.

Let E1,E2 and F be Banach spaces (all real or all complex), U an open set in
E1 ⇥ E2, f : U ✓ E1 ⇥ E2 ! F a mapping and u0 = (u01, u02) a point in U. Then the
partial derivatives D1 f (u0) 2 L(E1,F) and D2 f (u0) 2 L(E2,F) are the derivatives
of the maps x 7! f (x, u02) and y 7! f (u01, y) at u01 and u02, respectively, provided
they exist. The following is Proposition 2.4.12 of [AMR].

Theorem 1.1.2. If f : U ✓ E1 ⇥ E2 ! F is di↵erentiable on U, then, for every
u 2 U, the partial derivatives D1 f (u) and D2 f (u) exist. Furthermore

1. For every (e1, e2) 2 E1 ⇥ E2 and every u 2 U,

D1 f (u) · e1 = D f (u) · (e1, 0),

D2 f (u) · e2 = D f (u) · (0, e2),

and

D f (u) · (e1, e2) = D1 f (u) · e1 + D2 f (u) · e2.

2. f is Ck on U if and only if Di f , i = 1, 2, both exist and are Ck�1 on their domains.

More variables and higher orders are handled by induction. Next we will list a
few of the expected properties of derivatives, all of which are proved in Sections 2.4
and 2.5 of [AMR].

Theorem 1.1.3. Suppose f , g : U ✓ E! F are both k-times di↵erentiable and a is
in R (or C if the Banach spaces are complex). Then a f , f + g : U ✓ E ! F are k
times di↵erentiable with Dk(a f ) = aDk f and Dk( f + g) = Dk f + Dkg.
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Theorem 1.1.4. Suppose fi : U ✓ E ! Fi, i = 1, . . . , n, are all k times dif-
ferentiable. Then f = f1 ⇥ · · · ⇥ fn : U ✓ E ! F1 ⇥ · · · ⇥ Fn, defined by
f (u) = ( f1(u), . . . , fn(u)) for all u 2 U, is k times di↵erentiable and

Dk f = Dk f1 ⇥ · · · ⇥ Dk fn.

Theorem 1.1.5. (Chain Rule) Let f : U ✓ E ! V ✓ F and g : V ✓ F ! G be
di↵erentiable on the open subsets U and V of E and F, respectively. Then g � f :
U ✓ E! G is di↵erentiable on U and D(g � f )(u) = Dg( f (u)) � D f (u).

Remark 1.1.3. For the statement of the next two results (Theorems 2.5.2 and 2.5.7
of [AMR]) we recall that an isomorphism of Banach spaces is a linear isomorphism
that is also a homeomorphism; a linear isomorphism that preserves norms will be
called an isometric isomorphism. According to the Open Mapping Theorem (The-
orem 2.2.15 of [AMR] or Theorem 4.6.1 of [Fried]) a continuous, injective, linear
map from one Banach space E to another F is a homeomorphism if and only if it is
surjective.

Theorem 1.1.6. (Inverse Function Theorem) Suppose f : U ✓ E ! F is Ck, k �
1, u0 2 U and D f (u0) is a Banach space isomorphism of E onto F. Then f is a
Ck-di↵eomorphism (Ck-bijection with a Ck-inverse) of some neighborhood U0 of u0
onto the neighborhood f (U0) of f (u0) and, moreover, the derivative of the inverse
map is given by

D f �1(y) = [D f ( f �1(y))]�1.

for every y 2 f (U0).

Theorem 1.1.7. (Implicit Function Theorem) Let U ✓ E and V ✓ F be open sets
and f : U ⇥ V ✓ E ⇥ F ! G a Ck map for some k � 1. Suppose (u0, v0) 2
U ⇥ V and D2 f (u0, v0) : F ! G is a Banach space isomorphism. Then there exist
neighborhoods U0 of u0 and W0 of f (u0, v0) and a unique Ck map g : U0 ⇥W0 ! V
such that, for all (u,w) 2 U0 ⇥W0,

f (u, g(u,w)) = w.

Remark 1.1.4. We mention in passing that there is a much more subtle version of
the Inverse Function Theorem for (certain) Fréchet manifolds due to Nash which he
used to prove his famous Isometric Embedding Theorem for Riemannian manifolds.
There is a very detailed exposition of this result together with all of the prerequisite
material on Fréchet spaces and Fréchet manifolds in [Ham].

The theory of di↵erential forms on Banach spaces is virtually identical to the
more familiar theory on finite-dimensional vector spaces. Because we restrict our
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attention to linear problems we will not require the, also fairly routine, extension to
Banach manifolds. Our basic references for this material are Chapter 7 of [AMR]
and the book [Car1] of Cartan. We will provide just a brief synopsis to establish our
notation; needless to say, Rn is a real Banach space so everything we have to say is
equally true in the finite-dimensional case.

We let E denote a real Banach space. For each e 2 E we will canonically identify
the tangent space Te(E) to E at e with E itself; specifically, each ve 2 Te(E) is
uniquely expressible as d

dt (e + tv)|t=0 for some v 2 E and we identify Te(E) and
E by the isomorphism ve $ v. Consequently, a vector field on an open subset U
of E can be identified with a map from U to E; the vector field is Ck for some
k = 0, 1, . . . ,1 if this map is Ck. E⇤ will denote the dual (or conjugate) of E, that
is, the Banach space of all bounded linear functionals ↵ : E ! R on E with its
usual norm k↵k = supkek=1 |↵(e)|. For k � 2 we denote by Ak(E) the Banach space
(closed subspace of Lk(E,R)) of all bounded k-multilinear real-valued functions
! : Ek = E⇥ k· · · ⇥E! R that are alternating, that is, satisfy

!(e�(1) . . . , e�(k)) = sgn(�)!(e1, . . . , ek)

for every � in the symmetric group S k of permutations on {1, . . . , k}; here sgn(�) is
1 if � is an even permutation and -1 if � is odd. It is convenient to take A0(E) = R
and A1(E) = E⇤ as well.

Now, if U is an open subset of E, then a (di↵erential) k-form on U is a mapping

! : U ! Ak(E)

that assigns to each p 2 U an element !(p) = !p of Ak(E). One can consider k-
forms with any degree of di↵erentiability, but unless otherwise specified, we will
generally restrict attention to those that are smooth (C1). Thus, for example, a 0-
form on U is just a smooth, real-valued function on U. The vector space of all
smooth k-forms on U will be denoted ⌦k(U). For any k, l = 0, 1, . . . we define a
bilinear map

^ : ⌦k(U) ⇥ ⌦l(U)! ⌦k+l(U),

called the wedge product (or exterior product) as follows. If ! 2 ⌦k(U) and ⌘ 2
⌦l(U) with k, l � 1, then ! ^ ⌘ 2 ⌦k+l(U) is defined, at each p 2 U, by

(! ^ ⌘)p(e1, . . . , ek+l) =
1

k!l!

X

�2S k+l

sgn(�)!p(e�(1). . . . , e�(k)) ⌘p(e�(k+1) . . . , e�(k+l)).

If ! = f 2 ⌦0(U) and ⌘ 2 ⌦l(U), then f ^ ⌘ 2 ⌦l(U) is defined to be the pointwise
product of f and ⌘, that is,

( f ^ ⌘)p(e1, . . . , el) = f (p)⌘p(e1, . . . , el)
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and similarly if ! 2 ⌦k(U) and ⌘ = f 2 ⌦0(U). If ! and ⌘ are both 0-forms,
then there wedge products is just the pointwise product of these smooth, real-valued
functions.

Remark 1.1.5. In (7.1.1) of [AMR] one finds (! ^ ⌘)p(e1, . . . , ek+l) expressed
without the factor 1

k!l! and with the sum over only the shu✏e permutations of
{1, . . . , k, k + 1 . . . , k + l}. This is sometimes more convenient for explicit computa-
tions because there are fewer shu✏e permutations, but it is equivalent to the some-
what more common definition we have given above.

Note that, if ! and ⌘ are both 1-forms on U, then

(! ^ ⌘)p(e1, e2) = !p(e1)⌘p(e2) � !p(e2)⌘p(e1).

Just as in the finite-dimensional case one shows that the wedge product is associative

(! ^ ⌘) ^ ⌧ = ! ^ (⌘ ^ ⌧)

and graded commutative, that is, if ! 2 ⌦k(U) and ⌘ 2 ⌦l(U), then

⌘ ^ ! = (�1)kl! ^ ⌘

(see Proposition 7.1.5 of [AMR]).
If F : U ! V is a smooth map from the open set U in the Banach space E to the

open set V in the Banach space F and ! is a k-form on V , then we define a k-form
F⇤! on U, called the pullback of ! by F, by

(F⇤!)p(e1, . . . , ek) = !F(p)(DF(p) · e1, . . . ,DF(p) · ek)

for each p 2 U and e1, . . . , ek 2 E. Thus, F⇤ : ⌦k(V) ! ⌦k(U) carries k-forms to
k-forms. On the other hand, given a vector field X on U and a k-form ! on U with
k � 1 we define a (k � 1)-form ◆X! on U, called the contraction of ! with X, by

(◆X!)p(e1, . . . , ek�1) = !p(X(p), e1, . . . , ek�1)

for each p 2 U and e1, . . . , ek�1 2 E. It is customary to define ⌦�1(U) to be the real
vector space consisting of only the zero element and to define the contraction ◆X f
of a 0-form f to be zero. Pullback commutes with the wedge product (Proposition
7.3.10 (v) of [AMR])

F⇤(! ^ ⌘) = F⇤! ^ F⇤⌘,

and ◆X satisfies a graded product rule with respect to the wedge product (Proposition
7.4.8 (i) of [AMR]) , that is,

◆X(! ^ ⌘) = ◆X! ^ ⌘ + (�1)k! ^ ◆X⌘,
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where ! 2 ⌦k(U).
Just as for a finite-dimensional manifold, a Banach space has an intrinsic notion

of di↵erentiation for forms defined on it. This is called exterior di↵erentiation, it
carries k-forms to (k + 1)-forms and is denoted

d : ⌦k(U)! ⌦k+1(U).

Remark 1.1.6. It would be more proper to write dk : ⌦k(U) ! ⌦k+1(U) since the
maps do depend on the degree of the form to which they are being applied, but it
has become customary to drop the k and call them all d.

It is defined in the following way. Let ! 2 ⌦k(U). Regarding ! as a smooth
map from the open set U in the Banach space E to the Banach space Ak(E), it has a
Fréchet derivative D!. At each p 2 U, D!(p) : E ! Ak(E) so each D!(p) · e is an
alternating k-multilinear form on E. The exterior derivative of ! is the (k + 1)-form
d! defined by

d!p(e0, e1, . . . , ek) =
kX

i=0

(�1)i(D!(p) · ei)(e0, . . . , êi, . . . , ek),

where the hat ˆ indicates that ei is missing.

Example 1.1.2. If f is a 0-form on U (that is, a smooth, real-valued function on U),
then, for each p 2 U, D f (p) : E! R is given by

D f (p) · e = d
d"

f (p + "e)|"=0.

Since there is only one term in the sum defining it, d fp(e0) = D f (p) · e0. Thus, d f
is the 1-form on U which, at any p 2 U, sends e 2 E to the directional derivative of
f at p in the direction e.

d fp(e) = D f (p) · e = d
d"

f (p + "e)|"=0

Example 1.1.3. Let ! be a 1-form on U. Then ! : U ! A1(E) = E⇤ so, for each
p 2 U, D!(p) : E! E⇤. Then

d!p(e0, e1) =
1X

i=0

(�1)i(D!(p) · ei)(e0, . . . , êi, . . . , e1)

= (D!(p) · e0)(e1) � (D!(p) · e1)(e0).

Just as in the finite-dimensional case one shows that the exterior di↵erentiation
operator d has the following properties and is, in fact, characterized by them.
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1. d : ⌦k(U)! ⌦k+1(U) is linear for each k = 0, 1, . . ..
2. d2 = 0, that is, the composition

⌦k(U)
d! ⌦k+1(U)

d! ⌦k+2(U)

is identically zero for every k = 0, 1, . . ..
3. If ! 2 ⌦k(U) and ⌘ 2 ⌦l(U) for any k, l = 0, 1, . . ., then

d(! ^ ⌘) = d! ^ ⌘ + (�1)k! ^ d⌘.

Exercise 1.1.5. Verify the following special cases of these properties.

1. Show that d2 = 0 on 0-forms, that is, d(d f ) = 0 for every f 2 ⌦0(U).
2. Write out explicitly the exterior derivative d⌘ of a 2-form ⌘ and then show that

d2 = 0 on 1-forms.
3. Show that, if ! is a 1-form and ⌘ is a 2-form, then

d(! ^ ⌘) = d! ^ ⌘ � ! ^ d⌘.

The Lie derivative of a k-form ! with respect to a vector field X is another k-
form denoted LX!. In finite dimensions it measures the rate of change of ! along
the integral curves of X and is defined by

(LX!)p(v1, . . . , vk) =
d
dt

('⇤t!)p (v1, . . . , vk) |t=0

where {'t} is the (local) 1-parameter group of di↵eomorphisms (local flow) induced
by X. One can show that it is given in terms of the exterior derivative and contraction
with X by Cartan’s “magic” formula

LX! = d(◆X!) + ◆X(d!) (1.5)

(for a proof of this see Theorem 4.4.1 of [BG]). It is (1.5) that we will adopt as
the definition of the Lie derivative of forms on a Banach space. Lie di↵erentiation
satisfies the product rule

LX(! ^ ⌘) = LX! ^ ⌘ + ! ^ LX⌘

with respect to the wedge product.

Exercise 1.1.6. Show that the Lie derivative commutes with the exterior derivative,
that is,

d(LX!) = LX(d!).
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Exercise 1.1.7. Show that LX commutes ◆X , that is,

LX (◆X!) = ◆X (LX!).

1.2 Euler-Lagrange Equations for Real Scalar Fields

Our principal references for this section are [AMR], [LL] and [Evans]. We will let
H denote a real, separable Hilbert space with inner product denoted h , iH or simply
h , i if this will cause no confusion.

Remark 1.2.1. The reason we consider the real and complex cases separately is as
follows. The functions for which we need to write down a variational principle and
derive the Euler-Lagrange equations are Lagrangians and these are always real-
valued functionals on a Hilbert space of fields. If the fields are real-valued, then
such Lagrangians are maps from a real Banach space to a real Banach space and
therefore have a (real-linear) Fréchet derivative.

Furthermore, the quantization of complex-valued fields (such as complex Klein-
Gordon fields) often presupposes the quantization of the corresponding real field
and the resulting quantum fields have di↵erent physical interpretations in the real
and complex cases. For the time being we will focus on real fields and will return to
the complex case in Section 2.3.

Let f : U ✓ H ! R be a real-valued function that is (Fréchet) C1 on the open
set U. For each  2 H, D f ( ) : H ! R is a continuous linear functional on H

so, by the Riesz Representation Theorem (Theorem 6.2.4 of [Fried]), there exists a
unique element of H denoted

� f
� 
2 H

such that, for every � 2 H,

D f ( ) · � = d
d"

f ( + "�)
���
"=0 =

⌦ � f
� 
, �

↵
H. (1.6)

� f
� is generally called the functional derivative of f with respect to  ; it is simply
the analogue of the finite-dimensional gradient for a real-valued function on a real
Hilbert space.

Theorem 1.2.1. Let H be a real Hilbert space, U an open subset of H and f : U ✓
H ! R a C1 real-valued function on U. Then a necessary condition for f to have
a local extremum at  2 U is that � f

� = 0.
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Remark 1.2.2. Points  2 H at which � f
� = 0 are called critical points, or station-

ary points of f and, as in elementary calculus, they need not be points at which f
actually has a local extremum.

Proof. Notice that, by the nondegeneracy of h , iH, � f
� = 0 if and only if d

d" f ( +
"�)

���
"=0 = 0 for every � 2 H. But, if f has a local extremum at  2 H, then, for

every � 2 H, the di↵erentiable, real-valued function of the real variable " given by
" 7! f ( +"�) has a local extremum at " = 0 and therefore d

d" f ( +"�)
���
"=0 = 0. ut

Now we turn to the action functionals whose critical points are classical real
scalar fields. To construct an action functional one begins with a smooth real-valued
function L : R ⇥Rn ⇥Rn ! R which we will write as

L(u, v1, . . . , vn, x1, . . . , xn) = L(u, v, x).

Remark 1.2.3. In principle this smooth function could be quite general, but until
further notice we will restrict our attention to those of the form

L(u, v1, . . . , vn) = K(v1, . . . , vn) � V(u),

where K and V , called the kinetic and potential terms, respectively, are at most
quadratic in v1, . . . , vn and in u, respectively. In particular, L will not depend on x
(see Section 8.1.2 of [Evans] for a more general discussion).

Example 1.2.1. The two examples we will focus on are as follows.

1. (Dirichlet) L(u, v) = 1
2 kvk2 = 1

2 (v2
1 + · · · + v2

n)

2. (Klein-Gordon) In this case, n = 4 and

L(u, v) = L(u, v1, v2, v3, v4) =
1
2

✓ 1
c2 v2

1 � v2
2 � v2

3 � v2
4 �

m2c2

~2 u2
◆
,

where c is the speed of light, ~ = h
2⇡ is the reduced Planck constant, and m is a

positive constant.

We would like L(u, v1, . . . , vn) to determine a Lagrangian density on some real
Hilbert space H of fields '(x) by substituting u = '(x) and vi = @i'(x), i = 1 . . . , n.
That is, we want to define

L('(x),r'(x)) = L('(x), @1'(x), . . . , @n'(x))

for ' 2 H and from this obtain an action functional S : H ! R of the form



1.2 Euler-Lagrange Equations for Real Scalar Fields 13

S ['] =
Z

Rn
L('(x),r'(x)) dnx. (1.7)

From S ['] and the Principle of Least Action we will arrive at di↵erential equations
defining the dynamics of the fields. Of course, one must specify the Hilbert space
H of fields in such a way that the integral in (1.7) exists for every ' 2 H and the
choice of this Hilbert space will be dictated by the nature of L. For quadratic L one
can take H to be the Sobolev space H1(Rn;R) since then ' and all of its first order
distributional derivatives @ j' =

@'
@x j , j = 1, . . . , n, are in L2(Rn) (see Appendix A).

Example 1.2.2. For the Dirichlet and Klein-Gordon examples one obtains the fol-
lowing action functionals.

1. (Dirichlet) L(u, v1, . . . , vn) = 1
2 (v2

1 + · · · + v2
n))

S ['] =
1
2

Z

Rn

✓ @'
@x1

◆2
+ · · · +

✓ @'
@xn

◆2
dnx =

1
2

Z

Rn
kr'k2 dnx.

The Hilbert space of fields is taken to be H = H1(Rn;R). In particular, S ['] is
well-defined and finite for all smooth L2 functions with L2 first partial derivatives.

2. (Klein-Gordon) L(u, v1, v2, v3, v4) = 1
2

✓
1
c2 v2

1 � v2
2 � v2

3 � v2
4 � m2c2

~2 u2
◆
)

S ['] =
1
2

Z

R4

 1
c2

✓@'
@t

◆2
�

3X

k=1

✓ @'
@xk

◆2
� m2c2

~2 '2
�

d4x,

where we have denoted the coordinates on R4 by (t, x1, x2, x3). As in Example
(1) above we will take H = H1(R4;R).

Remark 1.2.4. In Section 2.1 we will show that the Klein-Gordon action S ['] is
invariant under proper, orthochronous Lorentz transformations so that it is more
natural to regard the fields ' as defined on Minkowski spacetime R1,3. Needless
to say, the Lebesgue measure does not care if we choose to supply R4 with a
Minkowski inner product and regard it as R1,3 so the Sobolev spaces H1(R4;R)
and H1(R1,3;R) are precisely the same.

For a quadratic Lagrangian density the action functional is therefore a real-valued
function on the real Hilbert space H1(Rn;R) so that a necessary condition for S to
have a local extremum at  2 H1(Rn;R) is that the functional derivative �S

� vanish
(Theorem 1.2.1). We would like to write this condition out more explicitly. We will
do this first for a smooth element  of H1(Rn;R) and arrive at a di↵erential equation
that  must satisfy and then we will discuss more general stationary points of S
on H1(Rn;R). Let  2 C1(Rn;R) \ H1(Rn;R) be fixed. The condition �S

� = 0
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implies, in particular, that if � 2 S(Rn;R) is arbitrary, then the smooth function
" 7! S [ + "�] satisfies

d
d"

S [ + "�]
���
"=0 = 0.

But

d
d"

S [ + "�]
���
"=0 =

d
d"

Z

Rn
L
�
 (x) + "�(x), r (x) + "r�(x)

�
dnx

���
"=0

=

Z

Rn

d
d"

L
�
 (x) + "�(x), r (x) + "r�(x)

����
"=0 dnx

=

Z

Rn

 @L
@u

( (x),r (x)) �(x) +
nX

k=1

@L

@vk
( (x),r (x))

@�

@xk

�
dnx.

Notice that we have used the smoothness of L, and � to justify di↵erentiating
under the integral sign. Since L is quadratic and � is a Schwartz function, each term
in the sum can be integrated by parts to give

d
d"

S [ + "�]
���
"=0 =

Z

Rn

 @L
@u

( (x),r (x)) +
nX

k=1

� @

@xk

✓ @L
@vk

( (x),r (x))
◆ �
�(x) dnx.

Since S(Rn;R) is dense in H1(Rn;R) a limiting argument shows that this equality
is satisfied for every � in H1(Rn;R) so we conclude that

�S
� 
=
@L

@u
( (x),r (x)) �

nX

k=1

@

@xk

✓ @L
@vk

( (x),r (x))
◆
.

The condition �S
� = 0 for a smooth element  of H1(Rn;R) therefore becomes

@L

@u
( (x),r (x)) �

nX

k=1

@

@xk

✓ @L
@vk

( (x),r (x))
◆
= 0. (1.8)

This is the Euler-Lagrange equation. It is satisfied by any smooth stationary point
of the action functional S [�]. One generally suppresses the variables (u, v1, . . . , vn)
in favor of ( , @ /@x1, . . . , @ /@xn) and omits the argument ( (x),r (x)) to write
the Euler-Lagrange equation in its traditional form as

@L

@ 
�

nX

k=1

@

@xk

✓ @L

@(@ /@xk)

◆
= 0, (1.9)
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where it is understood that everything is evaluated at ( (x),r (x)).

Example 1.2.3. The Dirichlet action is

S [ ] =
1
2

Z

Rn

✓ @ 
@x1

◆2
+ · · · +

✓ @ 
@xn

◆2
dnx =

1
2

Z

Rn
kr k2 dnx.

Since @L
@ = 0 and @L

@(@ /@xk) =
@ 
@xk , the Euler-Lagrange equation is just the Laplace

equation

� =
nX

k=1

@2 

(@xk)2 = 0.

The Klein-Gordon action is

S [ ] =
1
2

Z

R4

 1
c2

✓@ 
@t

◆2
�

3X

k=1

✓ @ 
@xk

◆2
� m2c2

~2  2
�

d4x.

Exercise 1.2.1. Show that the Euler-Lagrange equation can be written

1
c2
@2 

@t2 � � +
m2c2

~2  = 0,

where � =
P3

k=1
@2 

(@xk)2 is the spatial Laplacian. This is the Klein-Gordon equation.
Letting

⇤c =
1
c2
@2

@t2 � �

and

µ =
mc
~

one can write it as

(⇤c + µ
2) = 0.

In units for which c = 1, ⇤c is just the ordinary d’Alembertian and we will write it
simply ⇤.

Smooth stationary points of the action functional S ['] are solutions to the Euler-
Lagrange equation, but need not correspond to extrema and, even when extrema
exist, one cannot expect them to be smooth in general. To carry out a systematic
study of the solutions to the Euler-Lagrange equation one needs to enlarge the space
of functions in which the search for them takes place. If the Euler-Lagrange equation
happens to be linear (as it is for the Dirichlet and Klein-Gordon examples), then
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there is a weaker notion of “solution” that we will briefly try to motivate here and
then exploit in the next section. Let D =

P
|↵|m a↵(x)@↵, where a↵ 2 C1(Rn) for

each multi-index ↵, be a linear di↵erential operator (the functions can be real or
complex). If f is smooth, then one can seek smooth solutions to the di↵erential
equation

D = f . (1.10)

On the other hand, if f is a distribution (such as a Dirac delta or some L2 function),
then one can generally not expect to find a smooth function  satisfying (1.10). One
can, however, interpret each @↵ as a distributional derivative and seek distributions  
for which (1.10) is satisfied. Such a  is called a distributional solution to D = f .
Suppose one can prove that distributional solutions exist (we will discuss how this
might be done in a moment). One can then contend with the issue of whether or
not these distributions are regular and have some degree of smoothness. For elliptic
equations (such as the Laplace equation) one can appeal to what are called elliptic
regularity theorems. However, we will be interested primarily in wave equations,
which are hyperbolic, and for these there are no such general results because distri-
butional solutions simply need not be smooth.

We will gain some experience finding distributional solutions to the Klein-
Gordon equation in Section 2.2. Briefly, the idea is this. The Klein-Gordon equation
(with c = 1) is (⇤ + µ2) = 0, where the di↵erential operator ⇤ + µ2 is defined in
the ordinary or the distributional sense depending on the nature of  . Applying the
Fourier transform to both sides gives an algebraic equation for the Fourier transform
 ̂. Specifically, one obtains (p2�µ2) ̂ = 0, where p 2 R4 and p2 = p2

0� p2
1� p2

2� p2
3.

One then finds all of the solutions to this algebraic equation. These are generally dis-
tributions. Next one applies the inverse Fourier transform to each of these to obtain
the Klein-Gordon solutions. These may be either classical solutions or distributional
solutions depending on the distribution  ̂ from which they arose. The purpose of the
next section is to carry all of this out in more detail.



Chapter 2
Klein-Gordon Fields

2.1 Real Klein-Gordon Fields: Lagrangian Formulation

2.1.1 Relativistic Invariance

We have seen in the previous section how the Klein-Gordon equation arises as the
Euler-Lagrange equation for a certain action functional. We will begin this section
by considering another means by which the classical Klein-Gordon equation can be
“derived” from physical principles.

The derivation of the Klein-Gordon equation that one generally sees in the
physics literature (for example, Section 2.2 of [Ryd]) goes something like this. One
begins with the relativistic energy-momentum relation

E2 = |p|2c2 + m2c4 (2.1)

(see (2.59) of [Nab6]). Now we quote from Section 2.2 of [Ryd]. “The wave equa-
tion is obtained from (2.1) by substituting di↵erential operators for E and p, in the
fashion standard in quantum theory

E ! i~
@

@t
, pk ! �i~

@

@xk , k = 1, 2, 3.” (2.2)

The result is

�~2 @
2

@t2 = �~
2c2� + m2c4

and, from this,

1
c2
@2'

@t2 � �' +
m2c2

~2 ' = 0

17
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for any smooth '. In this sense, the Klein-Gordon equation is regarded as the quan-
tized version of the relativistic energy-momentum relation.

The Klein-Gordon equation was originally proposed as a relativistic substitute
for the Schrödinger equation, but certain issues were apparent from the outset. It
is, for example, second order in t and therefore a well-posed initial value problem
would require the specification of both  and @ 

@t at t = 0. Physicists would say that
there is an extra degree of freedom in the Klein-Gordon equation that is not present
in the Schrödinger equation. Because of such issues one should regard the Klein-
Gordon equation as a classical field equation (analogous to Maxwell’s equations
for the electromagnetic field) and not as an equation describing the evolution of the
quantum state of some particle.

It is not uncommon in the physics literature for an investigation to begin, not with
equations describing the time evolution of the system of interest, but rather with a
Lagrangian density. From this one obtains an action functional and then an appeal
to the principle of stationary action dictates that the equations of motion are just the
Euler-Lagrange equations. We have already seen how the Klein-Gordon equation
can be arrived at in this way. The Lagrangian density

L('(x),r'(x)) =
1
2

 1
c2

✓@'
@t

◆2
�

3X

k=1

✓ @'
@xk

◆2
� m2c2

~2 '2
�

(2.3)

gives rise to the action

S ['] =
1
2

Z

R4

 1
c2

✓@'
@t

◆2
�

3X

k=1

✓ @'
@xk

◆2
� m2c2

~2 '2
�

d4x (2.4)

and then the Euler-Lagrange (Klein-Gordon) equation

1
c2
@2'

@t2 � �' +
m2c2

~2 ' = 0. (2.5)

Whether or not this derivation is more fundamental than the quantization of the
energy-momentum relation is a matter of taste, or philosophy, but it is certainly
more typical.
Remark 2.1.1. Quantum field theory is an attempt to reconcile quantum mechan-
ics and special relativity. As a result, the equations are rich in c s and ~ s and these
can become something of an algebraic nuisance. To alleviate some of the bother
it is customary to work in what are called natural units in which both c and ~ are
dimensionless and equal to 1. In principle, this is not di�cult to do. Any system
of units is constructed in the same way. One chooses certain quantities to regard
as fundamental units (in mechanics these would include length, time, and mass).
For each of these one chooses (arbitrarily) some standard (such as the international
prototype kilogram, which is just a hunk of metal stored somewhere safe), selects
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a name for the unit (like kilogram) and assigns a value of 1 to the standard. Other
derived units are then determined by physical laws; for example, the unit of force
in classical mechanics is determined by F = mA to be (kg)ms�2 which is then given
a new name (Newton). One could equally well have begun with speed as a funda-
mental unit, taken the speed of light in vacuo to be the standard and assigned it the
dimensionless value 1 (which would then dictate that length and time have the same
units). This, in fact, is what we have done in Section 2.2 of [Nab6]. The advantages
are clear; formulas are streamlined and calculations are simplified. However, there
are equally obvious disadvantages. For instance, one loses any visual distinction be-
tween various orders of magnitude (c looks the same as c2). Moreover, laboratory
measurements are invariably recorded in more traditional units and one must even-
tually compare theoretical predictions with experimental results. All of this sounds
straightforward and rather dull, but it is actually not so straightforward and not at all
dull.

It seems like a pretty dull subject. However, in the realm of modern physics a
careful examination of the choice of units leads to some useful (even profound)

insights into the way the Universe works.

-R.L. Ja↵e

We will not pursue this any further here, but will simply refer those interested in the
matter to http://stu↵.mit.edu/afs/athena/course/8/8.06/spring08/handouts/units.pdf
and will adopt natural units in which

c = ~ = 1

unless there is some reason to believe that this will obscure an essential point.

In particular, the Klein-Gordon Lagrangian density (2.3), action (2.4), and equa-
tion (2.5) can now be written

L('(x),r'(x)) =
1
2

 ✓@'
@t

◆2
�

3X

k=1

✓ @'
@xk

◆2
� m2'2

�
,

S ['] =
1
2

Z

R4

 ✓@'
@t

◆2
�

3X

k=1

✓ @'
@xk

◆2
� m2'2

�
d4x

and

(⇤ + m2)' = 0,

where
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⇤ =
@2

@t2 �
@2

(@x1)2 �
@2

(@x2)2 �
@2

(@x3)2

is the d’Alembertian.

Remark 2.1.2. The Lagrangian density L is the di↵erence of a kinetic term T =
1
2

 ✓
@'
@t

◆2
� P3

k=1

✓
@'
@xk

◆2�
and a potential term V = 1

2 m2'2. Notice that the potential
term is quadratic and therefore contributes a linear term to the Euler-Lagrange equa-
tion. This is generally called the mass term. Adding a quartic term �

4'
4, � > 0, to the

potential introduces a cubic nonlinearity into the Euler-Lagrange equations which
then represents a self-interaction energy; � is the coupling constant and measures
the strength of the self-interaction. The resulting Lagrangian density

LHiggs('(x),r'(x)) =
1
2

 ✓@'
@t

◆2
�

3X

k=1

✓ @'
@xk

◆2
� m2'2 � �

2
'4

�

is called the Higgs Lagrangian.

Now that c = 1 we can, and will, adopt the relativistic notation introduced in
Chapter 2 of [Nab6]. In particular, t = x0 and the Klein-Gordon Lagrangian density,
action and equation can now be written

L(', @↵') =
1
2

(@↵' @↵' � m2'2),

S ['] =
1
2

Z

R1,3
(@↵' @↵' � m2'2) d4x,

and

(@↵@↵ + m2)' = 0.

We have written the action as an integral over R1,3 rather than R4, but only be-
cause we are now making some explicit use of the Lorentz inner product; d4x still
refers to integration with respect to the usual Lebesgue measure. However, this split-
ting ofR1,3 intoR⇥R3 by a choice of Minkowski basis suggests writing the action
as

S ['] =
Z

R

1
2

Z

R3
(@↵' @↵' � m2'2) d3x

�
dx0,

where dx = dx1dx2dx3. The spatial integral of the Lagrangian density L is generally
denoted
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L =
Z

R3
L d3x = 1

2

Z

R3
(@↵' @↵' � m2'2) d3x

and called simply the Lagrangian. The action is the time integral of the Lagrangian.

Remark 2.1.3. One should be aware, however, that the current literature very often
uses the terms Lagrangian and Lagrangian density interchangeably.

Writing the Klein-Gordon equation in the form (@↵@↵ + m2)'(x) = 0 is particu-
larly convenient for the discussion of what is called its Lorentz invariance. We would
like to be quite clear on what this is intended to mean. Suppose we have two inertial
coordinate systems related by x̂↵ = ⇤↵�x�, ↵ = 0, 1, 2, 3. The relativity principle
requires that the “laws of physics” must be the same in these two frames. Although
admittedly rather vague, the “laws of physics” should certainly include the equa-
tions governing the behavior of whatever physical system is under consideration at
the moment. In particular, the Klein-Gordon equation in the hatted reference frame
should have exactly the same form as in the unhatted frame, that is,

(@̂↵@̂↵ + m2) '̂(x̂) = 0.

Here @̂↵ means @/@x̂↵, but the meaning of '̂(x̂) requires some discussion. The Klein-
Gordon field is intended to be a scalar field, that is, simply a real- (or complex-)
valued function on Minkowski spacetime. Like any real- (or complex-) valued func-
tion on any manifold the Klein-Gordon field will have a coordinate representation in
any chart and two such coordinate representations are related in the simplest possi-
ble way; one need only substitute the corresponding coordinate transformation map
into one to obtain the other (in R2, for example, if the Cartesian coordinate repre-
sentation is x2 + 3y2, then the polar coordinate representation is r2 + 2r2sin2✓). For
coordinates on Minkowski spacetime corresponding to two oriented, orthonormal
bases, this takes the form '̂(x̂) = '(⇤�1 x̂) for some ⇤ 2 L

"
+. More explicitly, if

x̂↵ = ⇤↵�x�, then

'̂(x̂0, x̂1, x̂2, x̂3) = '(⇤↵0 x̂↵,⇤↵1 x̂↵,⇤↵2 x̂↵,⇤↵3 x̂↵ ).

This transformation law is what it means for ' to be a Lorentz scalar field.
Having specified a transformation law for the coordinate representations ', '̂, . . .,

we can now check to see if the Klein-Gordon equation is Lorentz invariant in the
sense that (@↵@↵ + m2)'(x) = 0 if and only if (@̂↵@̂↵ + m2) '̂(x̂) = 0. In fact, we will
show more. We claim that, for any smooth ',

(@̂↵@̂↵ + m2) '̂(x̂) = (@↵@↵ + m2)'(x). (2.6)

In more detail, we claim that

( ⌘↵�
@

@x̂↵
@

@x̂�
+ m2 ) '̂(x̂0, x̂1, x̂2, x̂3) = ( ⌘↵�

@

@x↵
@

@x�
+ m2 )'(x0, x1, x2, x3), (2.7)
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where xµ = ⇤⌫µ x̂⌫. To see this note first that

m2'̂(x̂0, x̂1, x̂2, x̂3) = m2'(⇤⌫0 x̂⌫,⇤⌫1 x̂⌫,⇤⌫2 x̂⌫,⇤⌫3 x̂⌫ ) (2.8)

by definition. Then two applications of the chain rule give

⌘↵�
@

@x̂↵
@

@x̂�
'̂(x̂0, x̂1, x̂2, x̂3) = ⌘↵�⇤↵�⇤��

@

@x�
@

@x�
'(⇤⌫0 x̂⌫,⇤⌫1 x̂⌫,⇤⌫2 x̂⌫,⇤⌫3 x̂⌫ ).

(2.9)

But ⌘↵�⇤↵�⇤�� = ⌘�� (Exercise 2.3.2 (3) of [Nab6]) so

⌘↵�
@

@x̂↵
@

@x̂�
'̂(x̂0, x̂1, x̂2, x̂3) = ⌘��

@

@x�
@

@x�
'(⇤⌫0 x̂⌫,⇤⌫1 x̂⌫,⇤⌫2 x̂⌫,⇤⌫3 x̂⌫ )

= ⌘↵�
@

@x↵
@

@x�
'(⇤⌫0 x̂⌫,⇤⌫1 x̂⌫,⇤⌫2 x̂⌫,⇤⌫3 x̂⌫). (2.10)

Adding (2.8) and (2.10) gives (2.7), that is, (2.6).
Shortly we will find it convenient to have this last calculation slightly rephrased

and generalized. For this we would like to think of a ⇤ 2 L"+ as giving rise to, not a
change of coordinates (passive transformation), but rather a di↵eomorphism ofR1,3

onto itself (active transformation). Then the defining left action (representation) of
L
"
+ on R1,3

x 2 R1,3 7! ⇤ · x = ⇤x 2 R1,3

induces a left action (representation) of L"+ on the real- (or complex-) valued func-
tions on R1,3

'(x) 7! (⇤ · ')(x) = '(⇤�1x).

What we have shown above is that the set of smooth solutions to the Klein-Gordon
equation is invariant under this action of L"+.

Exercise 2.1.1. Define analogous actions of the Poincaré group P
"
+ on Minkowski

spacetime and its real- (or complex-) functions and show that the set of smooth
solutions to the Klein-Gordon equation is invariant under the action of P

"
+. As a

result the Klein-Gordon equation is said to be Poincaré invariant.

More fundamentally, this invariance of the solution space is a consequence of
the fact that the Lagrangian density itself is invariant. To make this more precise
let’s think of the Klein-Gordon Lagrangian density L(', @↵') as a mapping from
C1(R1,3;R) to C1(R1,3;R). Specifically, ' 2 C1(R1,3;R) 7! L(') 2 C1(R1,3;R),
defined by

L(')(x) = L('(x), @↵'(x)) =
1
2

[ (@↵'(x)) (@↵'(x)) � m2'(x)2 ].
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For each ⇤ 2 L"+ define ⇤ · L by

(⇤ · L)(')(x) = L(' � ⇤)(⇤�1 · x).

Exercise 2.1.2. Here you will prove the Lorentz and Poincaré invariance of the
Klein-Gordon Lagrangian density and action.

1. By computing just as we did above for the proof of (2.6) show that

⇤ · L = L

for every ⇤ 2 L"+. This is the sense in which the Klein-Gordon Lagrangian den-
sity is Lorentz invariant.

2. Use the fact that every element of L"+ has determinant 1 to show that the Klein-
Gordon action S ['] is invariant under L"+ in the sense that S [⇤ · '] = S ['].

3. Extend both of these results to P
"
+.

Remark 2.1.4. The Klein-Gordon equation is the simplest example of a relativis-
tically invariant wave equation. There are many others, the most famous of which
is the Dirac equation. These are of fundamental significance to relativistic quantum
mechanics and quantum field theory. For a careful and systematic introduction to the
study of such equations we refer to pages 269-352 of [Gel]. In particular, we draw
attention to the discussion of equations (such as Klein-Gordon) that arise as Euler-
Lagrange equations for Lorentz invariant Lagrangian densities. With these one can,
as in classical mechanics, associate invariantly defined conserved quantities. We will
now have a brief look at how these conservation laws arise for Klein-Gordon.

2.1.2 Conservation Laws

We begin by generalizing just a bit. Since it costs no more e↵ort to do so we
will begin by considering a general Lagrangian density L(') = L(', @↵') =
L(', @1', . . . , @n') on Rn. As usual the partial derivatives with respect to x1, . . . , xn

are denoted @1, . . . , @n, while the derivatives of L with respect to its n + 1 variables
are written

@L

@'
,

@L

@(@1')
, . . . ,

@L

@(@n')
.

The di↵eomorphism group Di↵ (Rn) of Rn acts on Rn in the obvious way; specif-
ically, if g : Rn ! Rn is a di↵eomorphism of Rn onto itself, then g acts on Rn

by g · x = g(x). Consequently, each such g acts on the smooth real- (or complex-)
valued functions on Rn by (g · ')(x) = '(g�1 · x). If L is any Lagrangian density on
Rn we define g · L by
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(g · L)(')(x) = L(' � g)(g�1 · x).

We will say that L is invariant under the di↵eomorphism g if

g · L = L,

that is,

L(' � g)(g�1 · x) = L(')(x)

or, equivalently,

L(' � g)(x) = L(')(g · x)

for all ' and all x 2 Rn. In this case g is said to be a symmetry of L. We have shown
that every element of P"+ is a symmetry of the Klein-Gordon Lagrangian density so
P
"
+ is called a symmetry group of the Klein-Gordon Lagrangian density (or action).

Exercise 2.1.3. Show that if a Lagrangian density L is invariant under g and if the
Jacobian determinant of g is 1 everywhere, then the corresponding action functional
is invariant under g in the sense that S [g · '] = S ['] for all '. Stated otherwise, if L
is invariant under g and g preserves the Lebesgue measure on Rn (or, equivalently,
the standard volume form ! = dx1 ^ · · · ^ dxn), then it also preserves the action S .

Exercise 2.1.4. Find a di↵eomorphism of R1,3 onto itself for which the Klein-
Gordon Lagrangian density is not invariant under g.

Exactly as we did in classical mechanics (Appendix A.2 of [Nab6]) we will say
that a smooth vector field

X = Xi(x)
@

@xi

on Rn is an infinitesimal symmetry of L if its corresponding 1-parameter group
{gt : Rn ! Rn}t2R of di↵eomorphisms has the property that each gt is a symmetry
of L, that is, if L(')(gt(x)) = L(' � gt)(x) for all t 2 R and all x 2 Rn.

Remark 2.1.5. To streamline the exposition we will assume that the vector field X
is complete, but all that we will say can be localized if it is not. We will also assume
that each gt preserves the Lebesgue measure on Rn.

For the purposes of the ensuing calculation we will write the coordinate functions
of gt as

gt(x) = (g1
t (x), . . . , gn

t (x))

so that, by definition of the 1-parameter group associated with X,
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dgi
t

dt
(x)

���
t=0 = Xi(x), i = 1, . . . , n.

We begin by computing the derivative of L(') = L(', @↵') along the integral curves
of X (that is, the Lie derivative of L(') with respect to X). This is given at each x by

X [L(')(x)] = X↵(x)@↵(L(')(x)) = lim
t!0

L(')(gt(x)) � L(')(x)
t

= lim
t!0

L(' � gt)(x) � L(' � g0)(x)
t

=
d
dt
L(' � gt)(x)

���
t=0

and we need to write out this derivative explicitly. Since

L(' � gt)(x) = L(' � gt(x), @1(' � gt(x)), . . . , @n(' � gt(x)) ),

and

' � gt(x) = '(g1
t (x), . . . , gn

t (x))

this amounts to a completely routine, although rather annoying sequence of appli-
cations of the chain rule. Here is the first term.

@L
@'

(' � gt(x))
d
dt
'(g1

t (x), . . . , gn
t (x))

�

t=0

=
@L

@'
('(x))

 @'
@x1 (x)

dg1
t

dt
(x)

���
t=0 + · · · +

@'

@xn (x)
dgn

t

dt
(x)

���
t=0

�

=
@L

@'
('(x))


X1(x)

@'

@x1 (x) + · · · + Xn(x)
@'

@xn (x)
�

=
@L

@'
('(x)) X�(x)@�'(x)

The remaining terms
 @L

@(@↵')
(' � gt(x))

d
dt
@↵('(g1

t (x), . . . , gn
t (x)))

�

t=0

are a bit messier, but you no doubt get the idea.

Exercise 2.1.5. Compute as much of this as you feel you need to in order to be
convinced that the end result is

X [L(')(x)] = X↵(x)@↵(L(')(x)) =
d
dt
L(' � gt(x))

���
t=0

=
@L

@'
('(x))X�(x)@�'(x) +

@L

@(@↵')
('(x))


@↵X�(x)@�'(x) + X�(x)@�@↵'(x)

�
,
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or, with a bit less clutter,

X↵@↵L =
@L

@'
X�@�' +

@L

@(@↵')
⇥
@↵X�@�' + X�@�@↵'

⇤
.

Now we assume that ' satisfies the Euler-Lagrange equation (1.9). Then

@L

@'
= @↵

✓ @L

@(@↵')

◆

so we obtain

X↵@↵L = @↵

✓ @L

@(@↵')

◆
X�@�' +

@L

@(@↵')
⇥
@↵X�@�' + X�@�@↵'

⇤
.

Next we invoke our assumption that each gt preserves the standard volume form
! on R1,3. This implies that the Lie derivative of ! with respect to X vanishes.
But this Lie derivative is just the divergence if X times ! (this is essentially the
definition of the divergence of X) so we conclude that @�X� = 0. Consequently,
@↵(X↵L) = X↵@↵L. Substituting this into the last equation and rearranging gives

0 = �@↵(X↵L) + @↵
@L

@(@↵')
X�@�' +

@L

@(@↵')
⇥
@↵X�@�' + X�@�@↵'

⇤

= @↵

✓ @L

@(@↵')
X�@�' � �↵�X�L

◆

= @↵J↵(X),

where

J↵(X) = X�
✓ @L

@(@↵')
@�' � �↵�L

◆
, ↵ = 1, . . . , n.

The vector J(X) = (J1(X), . . . , Jn(X)) is called the current of the field ' with respect
to the infinitesimal symmetry X = X�@� and it satisfies the conservation law

div J(X) = @↵J↵(X) = 0.

We will write out some concrete examples shortly and, in the process, will explain
why this qualifies as a “conservation law”.

Remark 2.1.6. This constitutes one version of Noether’s Theorem for field theory.
There are many other versions and a through, rigorous presentation of all of these
is available in Sections 4.4 and 5.3 of [Olv]. For future reference, we would like
to record just one these other versions here which can be proved in much the same
way, but is also a special case of Corollary 4.30 of [Olv]. Suppose that instead of one
field we have several ' = ('1, . . . ,'N) and that the Lagrangian density L depends
on these and their first partial derivatives @↵' = (@↵'1, . . . , @↵'N),↵ = 1, . . . , n. The
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Euler-Lagrange equations then take the form

@L

@'�
� @↵

✓ @L

@(@↵'�)

◆
= 0, � = 1, . . . ,N.

Instead of the di↵eomorphism group acting onRn and thereby acting on the fields
as above, let us now suppose we have some matrix Lie group G acting on RN and
thereby acting on our set of fields. For example, if N = 2, then S O(2) acts on R2

and therefore acts on ' = ('1,'2) by rotating it.
 
'1

'2

!
7!

 
cos ✓ �sin ✓
sin ✓ cos ✓

!  
'1

'2

!

Suppose now that this action of G on ' is a symmetry of the Lagrangian density, that
is, that L is invariant under the action. Since G acts directly on the fields and not on
the coordinates x = (x1, . . . , xn), the action is referred to as an internal symmetry of
L to distinguish it from the external (or spacetime) symmetries of L arising from the
action of the di↵eomorphism group ofRn onRn. Each element A of the Lie algebra
g then gives rise to a 1-parameter group {etA}t2R of internal symmetries of L. The
infinitesimal generator of {etA}t2R is a vector field YA on RN . Now we will say that
any vector field Y on RN that is the infinitesimal generator for a 1-parameter group
of internal symmetries of L is an infinitesimal internal symmetry of L. Writing
y = (y1, . . . , yN) for the standard coordinates on RN , any such Y can be written as

Y = Y� @

@y�
.

Such an infinitesimal internal symmetry gives rise to a conserved current J =
(J1, . . . , Jn) given by

J↵(Y) = �Y� @L

@(@↵'�)
, ↵ = 1, . . . , n.

Specifically, the conservation law asserts that, if each J↵ is evaluated on some solu-
tion ' = ('1, . . . ,'N) to the Euler-Lagrange equations, then

div J(Y) = @↵J↵(Y) = 0.

This then is a version of Noether’s Theorem for internal symmetries. We will have
occasion to write out a concrete example in Section 2.3. We should mention also
that Corollary 4.30 of [Olv] is a version of Noether’s Theorem that allows for both
internal and external symmetries.

Returning now to external symmetries, we would like to write out some concrete
examples on R1,3. For these it is customary to suppress the dependence on X and
also to write
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(J1, J2, J3, J4) = ( j0, j1, j2, j3) = ( j0, j).

We will work in a fixed Minkowski coordinate system onR1,3 and will denote these
coordinates (t, x1, x2, x3) = (t, x). Our conservation law @↵ j↵ = 0 then becomes

@ j0

@t
= �div j = �

3X

i=1

@ ji

@xi .

Assuming j0(t, x) is integrable on R3 for each fixed t we define the charge

Q(t) =
Z

R3
j0(t, x) d3x.

If, for each t, | j(t, x) | approaches zero su�ciently fast as |x| ! 1, then the Diver-
gence Theorem implies the (global) conservation of charge

dQ(t)
dt
= 0.

Remark 2.1.7. Physicists have a tendency to refer to anything that is conserved in
some sense as a “charge” or “current”. The terminology originates in electromag-
netic theory which, in addition to Poincaré invariance has a certain internal, gauge
symmetry corresponding to the Lie group U(1). This is not the type of symmetry
we are discussing here (see Remark 2.1.6), but even so there are conservation laws
associated with such symmetries and, for the electromagnetic case, Q turns out to
be the familiar electric charge, while j is the electric current. In Section 2.3 we will
describe an analogous situation for the complex Klein-Gordon field.

Notice that this version of the conservation of charge asserts that the total charge
in all of R3 is constant in time. In particular, it allows for the rather inexplicable
possibility that charge simply disappears from one region provided an equal amount
appears at the same instant (in our fixed inertial frame) at the other end of the uni-
verse. There is, however, a much stronger local version that we will now describe.
Let R be a bounded region in R3 with smooth, orientable boundary @R and n the
outward unit normal vector field to @R. Define the charge contained in R at time t to
be

QR(t) =
Z

R
j0(t, x) d3x.

Then the Divergence Theorem gives

dQR(t)
dt

=

Z

R
�div j d3x = �

Z

@R
j · n dS
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so any change in the amount of charge contained in R must be accounted for by
a flux of the current through the boundary of R. The charge in R cannot simply
disappear, but must flow out.

For the examples to follow we want to consider the Klein-Gordon Lagrangian
density L and the action of the Poincaré group P

"
+ on R1,3. We know that, for every

g 2 P
"
+, the di↵eomorphism x 7! g · x = g(x) is a symmetry of L and, moreover,

preserves the volume form onR1,3 since everything in P
"
+ has Jacobian determinant

one. We recall that one can produce infinitesimal symmetries from this action in the
following way. Fix some A in the Lie algebra of P"+ and consider the smooth curve
t 7! etA in P

"
+. Each etA acts on R1,3 so we can define a smooth vector field XA on

R1,3 by

XA(x) =
d
dt

(etA · x)
���
t=0 = X↵

A(x) @↵ = x↵(Ax) @↵. (2.11)

Then the unique integral curve of XA through x at t = 0 is t 7! etA · x so XA is
complete and its 1-parameter group of di↵eomorphisms

�
gt : R1,3 ! R1,3 consists

of the maps gt(x) = etA · x, each of which is a symmetry of L. XA is therefore an
infinitesimal symmetry of L. The information we will need regarding P

"
+ and its Lie

algebra will be drawn from Sections 2.4 and 2.5 of [Nab6].

Example 2.1.1. Energy-Momentum
We consider first the subgroup of P"+ consisting of the translation group ofR1,3. This
is isomorphic to the additive group R1,3 and so its Lie algebra can also be identified
with R1,3. More precisely, any A in the Lie algebra of the translation group is a
real linear combination of the matrices O↵,↵ = 0, 1, 2, 3, described in Section 2.5.3
(page 71) of [Nab6], with coe�cients (a0, a1, a2, a3) 2 R1,3. The corresponding
infinitesimal symmetry is therefore, by (2.11), just a↵@↵ and so the corresponding
current satisfies

a�@↵
✓ @L

@(@↵')
@�' � �↵�L

◆
= 0.

But this must be satisfied for all (a0, a1, a2, a3) in R1,3 so we must have

@↵

✓ @L

@(@↵')
@�' � �↵�L

◆
= 0, � = 0, 1, 2, 3.

Now define

T↵
� =

@L

@(@↵')
@�' � �↵�L, ↵, � = 0, 1, 2, 3 (2.12)

so that

@↵T↵
� = 0, � = 0, 1, 2, 3.
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It is often convenient to use instead the contravariant form

T↵� = ⌘��T↵
� =

@L

@(@↵')
@�' � ⌘↵�L, ↵, � = 0, 1, 2, 3 (2.13)

of T↵
�. Since T↵

� and T↵� di↵er at most in a sign, (T↵
�) and (T↵�) are regarded as

having the same physical content. Of course, one still has

@↵T↵� = 0, � = 0, 1, 2, 3.

Consequently, for each fixed � = 0, 1, 2, 3, we obtain a conserved current

(T 0�,T 1�,T 2�,T 3�). (2.14)

We will have something to say about the corresponding charges shortly.
In classical mechanics we found that time translation symmetry corresponded

to conservation of energy and spatial translation symmetry corresponded to conser-
vation of (linear) momentum (Appendix A.2 of [Nab6]), while in special relativity
one is forced to conclude that energy and momentum are but di↵erent aspects of the
same underlying physical quantity. Since translations in R1,3 involve both transla-
tions in time and translations in space we are motivated to identify the matrix (T↵

�)
with the energy-momentum content of the field '. Indeed, (T↵

�) is known in the
physics literature as the canonical energy-momentum tensor of the field '; more ac-
curately, the T↵

� are the components of the energy-momentum tensor in the Lorentz
frame in which we happen to be doing these calculations.

Remark 2.1.8. Special relativity not only merges space and time into spacetime,
but also requires that various other classically distinct concepts, such as the energy
and momentum of a particle, be regarded as merely di↵erent aspects of a single
underlying physical concept. The reason is simply that di↵erent inertial observers
agree, for example, on the energy-momentum 4-vector of a particle, but not on how
much of it is energy and how much is momentum. For systems more complex than
a single particle, such as a fluid or a field, there is more to this. One can think of a
fluid, for example, as a huge swarm of particles that one might like to characterize
by something like a mass-energy density. However, what is mass-energy density in
one inertial frame will be some combination of mass-energy density and such things
as energy flux density and momentum flux density (pressure) in another frame. A
meaningful relativistic description must be in terms of an object that incorporates all
of these. This object is called the energy-momentum tensor (or stress-energy tensor)
and physicists have laid down a general scheme describing what they would like the
components of this tensor to mean physically. However, defining the tensor in order
to achieve these physical interpretations is a subtle business that necessarily involves
very detailed knowledge of the physics of whatever situation is being modeled. The
best way to get a sense of how this is done is to work through the definitions in
some particularly simple case such as a so-called perfect fluid or an electromagnetic
field. For those interested in pursuing this we mention that there is a very detailed



2.1 Real Klein-Gordon Fields: Lagrangian Formulation 31

discussion of the entire business in Minkowski spacetime in Chapter 5 of [MTW].
We will only point out that there are physical reasons for believing that such a tensor
should be symmetric (see Section 5.7 of [MTW]) and that what we have called the
canonical energy-momentum tensor need not have this property (although, as we
will soon see, for the Klein-Gordon field it does). Consequently, this definition,
although standard, is susceptible to serious physical objections and one should take
care not to be entirely won over by the use of such words as energy and momentum
in relation to it. This is a subject of much concern to physicists, but we will only
refer those interested to the discussion in http://arxiv.org/abs/hep-th/0307199.

This caveat having been duly noted we proceed to introduce still more physical-
sounding terminology. Notice that

T 00 = T 0
0 =

@L

@(@0')
@0' � L.

This entry is called the energy density of ' in the inertial frame under consideration.
Assuming its integral over R3 exists at any fixed time t,

P0 =

Z

R3
T 00 d3x

is the charge corresponding to the current (T 00,T 10,T 20,T 30). This is called the
total energy of ' in the given inertial frame. This is just a definition, of course, and
in the end definitions are justified only by their usefulness. For a bit of motivation,
however, one can compare

T 00 =
@L

@(@0')
@0' � L

with the expression

EL =
@L
@q̇i q̇i � L

for the total energy in Lagrangian particle mechanics (see (A.7) of [Nab6]).
Assuming again that the integrals exist, the charges corresponding to the remain-

ing currents (T 0k,T 1k,T 2k,T 3k), k = 1, 2, 3, are

Pk =

Z

R3
T 0k d3x =

Z

R3
@0' @

k' d3x, k = 1, 2, 3, (2.15)

and are identified with the components of the total momentum of the field ' in
the given frame. (P0, P1, P2, P3) are the components of the total 4-momentum of
the field. At the risk of becoming tedious we emphasize once again that these are
definitions, not theorems and one must look to the physics for motivation and/or jus-
tification. For more on the physical interpretation of the energy-momentum tensor
we refer to Chapter 5 of [MTW] or Section 32 of [LaLi].
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Notice that nothing we have done thus far depends on the specific form of the
Lagrangian density L, but only on its invariance with respect to translations inR1,3.
Now we specialize to Klein-Gordon.

Exercise 2.1.6. Let L = 1
2 (@↵' @↵' � m2'2).

1. Show that (with ↵ labeling the row),

(T↵
�) =

0
BBBBBBBBBBBB@

(@0')2 � L @0' @1' @0' @2' @0' @3'
�@0' @1' �(@1')2 � L �@1' @2' �@1' @3'
�@0' @2' �@1' @2' �(@2')2 � L �@2' @3'
�@0' @3' �@1' @3' �@2' @3' �(@3')2 � L

1
CCCCCCCCCCCCA

2. Show that T↵� = @↵' @�'�⌘↵�L so that (T↵�) is symmetric. Write out the matrix
(T↵�) explicitly.

3. Show that the entries in each column of the matrix (T↵
�) are the components of

a current 4-vector corresponding to some particular element of the Lie algebra of
P
"
+ and so each column has divergence zero.

4. Show that

T 00 =
@L

@(@0')
@0' � L =

1
2

✓ 3X

↵=0

(@↵')2 + m2'2
◆

and therefore

P0 =
1
2

Z

R3

✓ 3X

↵=0

(@↵')2 + m2'2
◆

d3x.

provided the integral exists.

Exercise 2.1.7. Return now to the case of a general Lagrangian density L. Assume
that T↵� satisfies T↵� = T �↵ for all ↵, � = 0, 1, 2, 3, and @↵T↵� = 0 for all � =
0, 1, 2, 3. Define T↵�� by

T↵�� = x�T↵� � x�T↵�, ↵, �, � = 0, 1, 2, 3.

Show that

@↵T↵�� = 0, �, � = 0, 1, 2, 3.

T↵�� are the components of the canonical moment tensor and will see their signifi-
cance in the next example.

Example 2.1.2. Angular Momentum
Now we turn to the L"+ subgroup of P"+ and consider a Lagrangian density L, such as
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Klein-Gordon, that is invariant under the action of L"+. The Lie algebra of L"+ can be
identified with the 4 ⇥ 4 matrices (a↵�) for which a↵� = ⌘↵�a�� satisfies a�↵ = �a↵�
(see Exercise 2.5.1 of [Nab6]). The corresponding infinitesimal symmetry is, by
(2.11), X = (a↵�x�) @↵ so the associated current satisfies

@↵

✓ @L

@(@↵')
(a��x�)@�' � �↵� (a��x�)L

◆
= 0.

This is equivalent to each of the following.

a��@↵
✓ @L

@(@↵')
x�@�' � �↵� x�L

◆
= 0

⌘µ�a��@↵
✓ @L

@(@↵')
x�⌘µ�@�' � ⌘µ��↵� x�L

◆
= 0

aµ�@↵
✓ @L

@(@↵')
x�@µ' � ⌘µ↵x�L

◆
= 0

Using the skew-symmetry of the aµ� we can write this as

X

0µ<�3

aµ�@↵
✓ @L

@(@↵')
(x�@µ' � xµ@�') � (⌘µ↵x� � ⌘�↵xµ)L

◆
= 0.

But the coe�cients aµ� with µ < � are arbitrary so we must have

@↵

✓ @L

@(@↵')
(x�@µ' � xµ@�') � (⌘µ↵x� � ⌘�↵xµ)L

◆
= 0 (2.16)

for all 0  µ < �  3.

Exercise 2.1.8. Let T↵� = ⌘��T↵
� =

@L
@(@↵')@

�'�⌘↵�L, ↵, � = 0, 1, 2, 3, and consider
the canonical moment tensor T↵�µ defined in Exercise 2.1.7. Show that (2.16) is
equivalent to

@↵T↵�µ = 0, �, µ = 0, 1, 2, 3.

Consequently, for each fixed �, µ = 0, 1, 2, 3, we have a conserved current

(T 0�µ,T 1�µ,T 2�µ,T 3�µ)

and a corresponding charge
Z

R3
T 0�µ d3x =

Z

R3
(x�T 0µ � xµT 0�) d3x
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that will be conserved if the integrands decay su�ciently fast as |x|! 1. We would
like to make some specific choices for � and µ and look for possible physical inter-
pretations of the corresponding charges. First suppose 1  i < j  3 and consider

J i j =

Z

R3
(xiT 0 j � x jT 0i) d3x.

According to the scheme laid down by the physicists, each T 0k, k = 1, 2, 3, is a
component of the momentum density of the field (see (2.15)). Consequently, xiT 0 j�
x jT 0i bears a rather striking resemblance to a component of the familiar definition
of angular momentum in classical mechanics (Example A.2.1 of [Nab6]). For this
reason, J i j is referred to as the kth-component of the total angular momentum of the
field ', where 1  k  3, k , i, k , j. In the following sense these three components
are the conserved quantities associated with invariance under the rotation group.

Exercise 2.1.9. The calculations above leading to the conservation law @↵T↵�µ =
0, �, µ = 0, 1, 2, 3, were based on the invariance of the Lagrangian density under
the entire group L

"
+. Consequently, (a↵�) represented an arbitrary element of the

Lie algebra of L"+. Repeat these computations, but assuming only invariance under
the rotation subgroup of L

"
+ so that (a↵�) is some real linear combination of the

generators M1,M2, and M3 of rotations (see page 65 of [Nab6]). Show that one
obtains in this way just three independent currents and that the resulting charges are
precisely the components J i j, 1  i < j  3, of the total angular momentum of '.

Now take � = 0 and µ = k = 1, 2, 3. We obtain three charges

J 0k =

Z

R3
(x0T 0k � xiT 00) d3x, k = 1, 2, 3.

Exercise 2.1.10. Carry out the procedure described in Exercise 2.1.9 with the gener-
ators N1,N2, and N3 of the boosts in L

"
+ (page 65 of [Nab6]) rather than M1,M2, and

M3 to show that there are just three independent currents and that the corresponding
charges are J 0k, k = 1, 2, 3.

These conserved quantities J 0k, k = 1, 2, 3, associated with boosts do not appear to
have been given any standard names and are rarely even mentioned in the physics
literature. When they do put in an appearance it is generally in a somewhat di↵erent
form that is described in the next exercise.

Exercise 2.1.11. Assuming the required integrability, the charges J 0k, k = 1, 2, 3,
are conserved so their time derivatives are all zero. Write out

d
dt

Z

R3
(tT 0k � xkT 00) d3x = 0
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explicitly to obtain, for each k = 1, 2, 3,

d
dt

Z

R3
xkT 00 d3x = Pk + t

dPk

dt
,

where Pk is given by 2.15. Now assume also that the Lagrangian density is invariant
under translations and conclude that

d
dt

Z

R3
xkT 00 d3x

is constant for each k = 1, 2, 3. In physics this is taken to mean that the center of
energy of the field ' travels with constant velocity and is thought of as an analogue
of Newton’s First Law.

2.2 Solutions to the Klein-Gordon Equation

We would now like to look at some explicit solutions to the Klein-Gordon equation
(⇤ + m2)' = 0. For these explicit formulas we will allow the solutions to be com-
plex and just take real and imaginary parts if we want real solutions. We will be
interested in solutions of various types, beginning with what we will call strong, or
classical solutions; these are simply functions ' onR1,3 that are twice continuously
di↵erentiable with respect to each x↵,↵ = 0, 1, 2, 3, and satisfy the equation. A dis-
tributional solution to the Klein-Gordon equation is a tempered distribution ' that
satisfies the Klein-Gordon equation when the derivatives are all interpreted as dis-
tributional derivatives. Equivalently, ' is a distributional solution to Klein-Gordon
if it annihilates any Schwartz function in the image of the Klein-Gordon operator
⇤ + m2, that is, if it satisfies

h', (⇤ + m2)� i = 0 8� 2 S(R1,3).

Although we will tend to eschew the following notational convention, one often sees
this condition written as an integral

Z

R1,3
'(x) (⇤ + m2) �(x) d4x = 0 8� 2 S(R1,3),

whether or not the distribution ' happens to be regular.
We have seen that the natural action of L"+ on functions carries classical solutions

of Klein-Gordon onto other classical solutions (Section 2.1.1). There is also a natu-
ral action of L"+ on the tempered distributions of R1,3. Specifically, we define ⇤ · '
for each ⇤ 2 L"+ by
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h⇤ · ', �i = h',⇤ · �i 8� 2 S(R1,3)

Notice, by the way, that ⇤ · � is a Schwartz function whenever � 2 S(R1,3). A
distribution ' is invariant under ⇤ 2 L"+ if ⇤ · ' = ', that is, if

h', � � ⇤�1 i = h', � i

for every � 2 S(R1,3) and invariant under L
"
+ if this is true for every ⇤ 2 L

"
+.

We will be looking for classical and distributional solutions to the Klein-Gordon
equation and, in particular, those that are invariant under L"+.

Now we begin our search for solutions as one does in the case of the electromag-
netic field (Section 4.2 of [Nab5]) by looking for plane wave solutions in some fixed
admissible basis for R1,3 of the form

'(t, x) = ei(!t�k·x),

where ! 2 R and k 2 R3. These are all smooth, of course, so one can simply
compute the derivatives and substitute into the Klein-Gordon equation. The result is

(�!2 + kkk2 + m2)ei(!t�k·x) = 0

which can only occur if the dispersion relation

!2 � kkk2 = m2

is satisfied. Now recall that, for any plane wave, ! is interpreted physically as the
wave’s angular frequency and k, the wave vector, points in the direction in which the
wave is propagating and has magnitude equal to the wave’s spatial frequency. Thus,
!/kkk is the wave’s speed, in the sense that this is the speed at which the crests of
either Re ('(t, x)) or Im ('(t, x)) travel.

Now we interject some physics into the picture by applying the Planck-Einstein-
de Broglie relations (see page 132 of [Nab5]) to the plane wave ', that is, we define
p0 = ~! = E, p = ~k and p = (p0, p1, p2, p3) = (p0,p). In natural units ~ = 1 so we
conclude that p = (!,k). Thus, ! = E and k = p and our plane wave solution is

'(x) = '(t, x) = ei(Et�p·x) = eip↵x↵ , (2.17)

where p↵ = ⌘↵�p�. The dispersion relation now becomes

p↵p↵ = m2.

In order that ' be a scalar solution to the Klein-Gordon equation the dispersion
relation must be satisfied in every frame of reference. To ensure this we define the
components of p in any other admissible frame in such a way that p transforms
as a 4-vector, that is, p̂↵ = ⇤↵�p� if the new frame is given by x̂↵ = ⇤↵�x�. Then
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p̂↵ x̂↵ = p↵x↵ and p̂↵ p̂↵ = p↵p↵ = m2. We call p the energy-momentum 4-vector
or simply the 4-momentum of the plane wave '. Thus, the 4-momentum of a plane
wave solution to the Klein-Gordon equation is restricted to the mass hyperboloid
Xm = {p 2 P1,3 : p↵p↵ = m2}; it can be either future directed p0 > 0 and so lie in
X+m or past directed and so lie in X�m. When p 2 X+m we will call the plane wave '
a positive frequency solution or positive energy solution, whereas if p 2 X�m it is a
negative frequency solution or negative energy solution.

Notice that these plane wave solutions are not in L2(R1,3) since | ei(Et�p·x) |2 =
1 which is not integrable over R1,3. Nevertheless, if � is any Schwartz function
on R1,3, ei(Et�p·x)�(x) is integrable on R1,3 so ei(Et�p·x) can be identified with the
tempered distribution whose value at any � 2 S(R1,3) is

h ei(Et�p·x), � i =
Z

R1,3
ei(Et�p·x)�(x) d4x =

Z

R1,3
eip↵x↵�(x) d4x.

Exercise 2.2.1. Show that ei(Et�p·x), regarded as an element of S0(R1,3), is a distribu-
tional solution to the Klein-Gordon equation.

Remark 2.2.1. Although we have already pointed out that there are a number rea-
sons to doubt that the Klein-Gordon equation is the appropriate relativistic analogue
of the Schrödinger equation, let us put those aside for a moment and try to regard the
plane wave solution ' of Klein-Gordon as a wave function for a single, relativistic
particle of mass m. Not being in L2(R3) for fixed t, the plane wave solutions are not
normalizable, but they are instructive and, in a sense to be described shortly, every
solution is a superposition of these plane waves. We will assume that the particle
associated with ' has the same energy-momentum 4-vector p as the plane wave.
Now notice that the dispersion relation implies

E = ±
q

m2 + kpk2.

In particular, this allows for the possibility that the total energy E of the particle can
be negative. These negative energy states present rather substantial di�culties for
the physical interpretation and one would like to simply ignore them on physical
grounds. Indeed, this is precisely what is done in classical (pre-quantum) special
relativity where E2 = m2 + kpk2 is simply taken to mean E =

p
m2 + kpk2. In

quantum mechanics, however, the situation is not so simple and one can argue that
there is no particularly compelling reason to assume that negative energy solutions
can simply be ignored. This is a subtle business and still not resolved to everyone’s
satisfaction so we will be content with a few simple remarks. We mentioned earlier
that a general real Klein-Gordon field can be written as a superposition of plane
waves. Specifically, one finds in the physics literature explicit formulas such as the
following for such a field.
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'(t, x) =
1

(2⇡)3/2

Z

R3

1
2!p

�
ei(!pt�p·x) a(p) + e�i(!pt�p·x) a(p)

�
d3p (2.18)

Here !p =
p

m2 + kpk2 is positive so the expansion of '(t, x) requires both positive
and negative energy plane waves (we will have more to say about where such a
formula might come from as we proceed). Without negative energy solutions one
therefore cannot describe all of the real Klein-Gordon fields and so will generally
not be able to describe the evolution of the field from initial data. It turns out, in
fact, that when one includes terms in the equation that represent an interaction with
an electromagnetic field an initially positive energy solution will necessarily evolve
into a negative energy state (through the emission of photons, for example). These
issues still exist and are more acute and more physically relevant in the case of the
Dirac equation where rather elaborate schemes have been devised to resolve them.
For more on the physics behind all of this one should consult a book on relativistic
quantum mechanics, for example, [BD1] or [Gri].

Now we set about solving the Klein-Gordon equation

(⇤ + m2)' = 0

by applying the Fourier transform to both sides. Since the functions and distributions
of interest are defined on Minkowski spacetime and we are looking for solutions
invariant under L"+ we will use the Minkowski-Fourier transform FM introduced in
Appendix A. For clarity we will also revert to the notation of Section 2.6.1 of [Nab6]
and writeP1,3 for the copy ofR1,3 on which FM� = �̃ is defined for any � 2 S(R1,3).
Recall that, for � 2 S(R1,3), FM is given by

(FM�)(p) = �̃(p) =
1

(2⇡)2

Z

R1,3
e�ihp,xi�(x) d4x,

where hp, xi = p↵x↵ is the Lorentz inner product, and then the definition is extended
to L2(R1,3) and to the tempered distributions on R1,3 in the same way as the usual
Fourier transform. On S(P1,3) the inverse Minkowski-Fourier transform is given by

(F�1
M  )(x) =

1
(2⇡)2

Z

R1,3
eihx,pi (p) d4 p.

To apply the Fourier transform to both sides of the Klein-Gordon equation we must
assume that (⇤+m2)' has a Fourier transform and therefore is, at least, a tempered
distribution. Consequently, we will be working in the context of S 0(R1,3) and will
sort out at the end what degree of smoothness the solutions we construct actually
have. The following two exercises describe the advantages of FM over the usual
Fourier transform.

Exercise 2.2.2. Show that, for every � 2 S(R1,3),

FM(⇤ · �) = ⇤ · (FM�)
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so, in particular, � is invarint under L"+ if and only if its Minkowski-Fourier trans-
form FM� is invariant under L"+, that is,

⇤ · � = �, ⇤ · (FM�) = FM�.

Also prove the same results for the inverse Fourier transform F�1
M . Hint: Apply the

Change of Variables Formula (Theorem 2.6.1 of [Nab6]). Prove and use the fact
that, with respect to the Lorentz inner product, the adjoint of ⇤ 2 L"+ is ⇤�1.

Exercise 2.2.3. Show that a tempered distribution ' 2 S 0(R1,3) is invariant under
⇤ 2 L"+ if and only if its Minkowski-Fourier transform is invariant under ⇤, that is,

⇤ · ' = ', ⇤ · (FM') = FM'.

For � 2 S(R1,3) the basic properties of the Fourier transform (Appendix A) imply
that

FM [ (⇤ + m2)� ] = (�p2 + m2)FM� = (�p2 + m2)�̃ (2.19)

where p2 = p↵p↵.

Exercise 2.2.4. Show that that (2.19) remains valid for distributions, that is,

FM [ (⇤ + m2)' ] = (�p2 + m2)FM' = (�p2 + m2)'̃ (2.20)

for every ' 2 S 0(R1,3). In particular,

(⇤ + m2)' = 0, (p2 � m2) '̃ = 0

so, in momentum space P1,3, the Klein-Gordon equation takes the form

(p2 � m2) '̃ = 0. (2.21)

If '̃ is a smooth function, then (2.21) implies that it must vanish on the comple-
ment of the mass hyperboloid Xm = {p 2 P1,3 : p↵p↵ = m2}. A distribution is said to
vanish on an open set U if it takes the value zero on any Schwartz function � whose
support is contained in U and the support of the distribution is the complement of
largest open set on which it vanishes.

Exercise 2.2.5. Show that any distribution '̃ on P1,3 satisfying (2.21) vanishes on
the complement P1,3 � Xm of the mass hyperboloid. Conclude that the value of '̃
on any Schwartz function is uniquely determined by the restriction of the Schwartz
function to Xm.
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What we would like to do then is to find distributions on momentum space sat-
isfying (2.21) and then apply the inverse Fourier transform F�1

M to obtain solutions
to the Klein-Gordon equation (⇤ + m2)' = 0 on R1,3. It should be clear from the
previous exercise that the mass hyperboloid Xm will figure heavily in this so we will
pause to make a few observations. Xm is clearly a smooth submanifold of R1,3 with
two connected components Xm = X+m t X�m. To ease the exposition a bit we will re-
strict most of our remarks to the upper branch X+m of the hyperboloid. By definition,
the action of L"+ on P1,3 carries X+m to itself. Indeed, X+m is the complete orbit of any
one of its points under this action (see page 95 of [Nab6]). Being the graph in P1,3

of the function h : R3 ! R defined by h(p) = h(p1, p2, p3) = !p =
p

m2 + kpk2, X+m
has a global chart given by the projection ⇡+(!p, p1, p2, p3) = (p1, p2, p3). In par-
ticular, X+m is di↵eomorphic to R3. We will denote by ◆+ : X+m ,! P1,3 the inclusion
map of X+m into P1,3 and by s+ : R3 ! X+m the di↵eomorphism s+(p) = (!p,p).

Exercise 2.2.6. Show that the restriction ◆⇤+⌘ of the Minkowski metric on P1,3 to X+m
is a Riemannian metric because every tangent vector to X+m in P1,3 is spacelike.

With this metric X+m has constant sectional curvature � 1
m2 (see the Proposition on

page 113, Chapter 4, of [O’N]) and we will refer to it as m-hyperbolic space. When
m = 1 it is known simply as hyperbolic space and is one of the three famous models
of hyperbolic geometry. We have already seen (Section 2.6.2 of [Nab6]) that X+m
admits a Lorentz invariant measure µm defined as follows. For any Borel set B ✓ X+m,
⇡+(B) is a Borel subset of R3 so we can define

µm(B) =
Z

⇡+(B)

d3p
2!p

=

Z

⇡+(B)

d3p
2
p

m2 + kpk2
,

where d3p = dp1 dp2 dp3 denotes integration with respect to Lebesgue measure on
R3.

Now we return to the problem of solving the Klein-Gordon equation. We have
seen that solutions arise as inverse Fourier transforms of distributions on P1,3 that
vanish on the complement of the mass hyperboloid X+m. The Lorentz invariant mea-
sure µm on X+m that we have just introduced provides a means of constructing one
such distribution. It is called the Dirac delta supported on X+m, usually denoted
�+(p2 � m2), and defined at any Schwartz function � 2 S(P1,3) by restricting �
to X+m and integrating the restriction with respect to µm, that is,

⌦
�+(p2 � m2), �

↵
=

Z

X+m
◆⇤+� dµm =

Z

R3

�(
p

m2 + kpk2 , p1, p2, p3)

2
p

m2 + kpk2
dp1dp2dp3.

(2.22)

The distribution �+(p2�m2) is invariant under L"+ because the measure µm is Lorentz
invariant.
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Remark 2.2.2. We point out once again the custom of writing the value of �+(p2 �
m2) at � as an integral

Z

P1,3
�(p)�+(p2 � m2) d4 p (2.23)

despite the fact �+(p2 � m2) is not a regular distribution.

Notice that the integrand in (2.22) is actually a Schwartz function on R3. In fact,
we can define a continuous map ⇧+ : S(P1,3) ! S(R3) from the test functions on
P1,3 to the test functions on R3 by

⇧+(�(p0, p1, p2, p3)) =
�(

p
m2 + kpk2 , p1, p2, p3)

2
p

m2 + kpk2
.

Since �+(p2 � m2) is certainly supported on X+m its inverse Fourier transform
F�1

M [�+(p2�m2)] is a solution to the Klein-Gordon equation onR1,3 that is invariant
under L"+. Computing this inverse transform explicitly requires quite a lot of work
and the result is a rather complicated formula for a distribution on R1,3 involving
Hankel and modified Bessel functions. Since we will not require the result we will
simply refer those interested in seeing this done to [deJag], where the calculations
are carried out in great detail.

Remark 2.2.3. Everything we have just done for the upper branch X+m of the mass
hyperboloid Xm could equally well be done for the lower branch X�m. In particular,
we have a Dirac delta ��(p2 � m2) supported on X�m given by

⌦
��(p2 � m2), �

↵
=

Z

X�m
◆⇤�� dµm =

Z

R3

�(�
p

m2 + kpk2 , p1, p2, p3)

2
p

m2 + kpk2
dp1dp2dp3

and a corresponding invariant solution F�1
M [��(p2 �m2)] to the Klein-Gordon equa-

tion as well as a projection ⇧� : S(P1,3)! S(R3) given by

⇧�(�(p0, p1, p2, p3)) =
�(�

p
m2 + kpk2 , p1, p2, p3)

2
p

m2 + kpk2
.

We can also combine �+(p2 � m2) and ��(p2 � m2) into a Dirac delta �(p2 � m2)
supported on Xm

�(p2 � m2) = �+(p2 � m2) + ��(p2 � m2),

where the sum is defined pointwise on S(P1,3).
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Exercise 2.2.7. 1. Show that any Schwartz function of the form (p2 � m2)� with
� 2 S(P1,3) satisfies

⇧±((p2 � m2)�) = 0.

2. Let ⌘+ and ⌘� be two arbitrary tempered distributions on R3. Define a tempered
distribution '̃ on P1,3 by

⌦
'̃, �

↵
=

⌦
⌘+,⇧+(�)

↵
+

⌦
⌘�,⇧�(�)

↵

for every � 2 S(P1,3). Show that (p2 � m2)'̃ = 0.

Remark 2.2.4. Conversely, every distribution '̃ on P1,3 satisfying (p2�m2)'̃ = 0
is of the form

⌦
⌘+,⇧+(�)

↵
+

⌦
⌘�,⇧�(�)

↵
for some ⌘+, ⌘� and �. This is proved

in Section 3.3 of [deJag].

The previous Exercise and Remark describe all of the distributional solutions to
(p2 � m2)'̃ = 0 on P1,3. One of the major results of [deJag], also proved in Section
3.3 of that paper, is that every distribution on P1,3 satisfying (p2 � m2)'̃ = 0 and
invariant under L"+ is a constant linear combination of �+(p2 �m2) and ��(p2 �m2),
that is,

'̃ = c+�+(p2 � m2) + c���(p2 � m2). (2.24)

This e↵ectively describes all of the Lorentz invariant solutions to the momentum
space form of the Klein-Gordon equation and therefore, by taking inverse Fourier
transforms F�1

M , all of the Lorentz invariant distributional solutions to the Klein-
Gordon equation. Thus, from (2.24) we conclude that every Lorentz invariant solu-
tion to the Klein-Gordon equation on R1,3 is of the form

c+F�1
M [�+(p2 � m2)] + c�F�1

M [��(p2 � m2)],

where c+ and c� are constants. We will not give the rather involved proof of this
here (see [deJag] for this as well as explicit computations of the inverse transforms).
Instead we will conclude by writing out some (not necessarily Lorentz invariant)
solutions to the Klein-Gordon equation in the hope of illustrating how formulas
such as (2.18) arise.

Begin by selecting a smooth, complex-valued function c+ : X+m ! C with com-
pact support on X+m. Extend c+ arbitrarily to a smooth, complex-valued function
C+ : P1,3 ! C on P1,3 with compact support.

Exercise 2.2.8. Describe a procedure for constructing such an extension C+. Hint:
First extend c+ toP1,3 � X+m⇥R and then multiply by an appropriate cut-o↵ function
(see Exercise 2-26 of [Sp1]).
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Since C+ has compact support the distribution C+�+(p2 �m2) is defined, is given
by

⌦
C+�+(p2 � m2), �

↵
=

⌦
�+(p2 � m2), C+�

↵
=

Z

X+m
◆⇤+( C+� ) dµm =

Z

X+m
c+◆⇤+� dµm

and has compact support in X+m.

Exercise 2.2.9. Let '̃ be a tempered distribution on P1,3 with compact support K ✓
Xm. By definition, '̃ is defined on every element of S(P1,3). Show that '̃ extends to a
map '̃0 defined on all of C1(P1,3). Hint: Choose a bounded open set U in P1,3 with
K ✓ U and a smooth real-valued (“bump”) function f on P1,3 that is 1 on K and
0 on P1,3 � U (see Exercise 2-26 of [Sp1]). Define '̃0(g) = '̃( f g) for any smooth
function g on P1,3 and show that the definition is independent of the choice of f .

According to Exercise 2.2.9, C+�+(p2�m2) extends to a map on the smooth func-
tions on P1,3 (we will omit the prime and use the same symbol for this extension).
Fix an x = (x0, x1, x2, x3) = (t, x) in R1,3 and consider the smooth function of p
defined by (2⇡)�3/2eihx,pi, where the hx, pi = x↵p↵. Now we evaluate

⌦
C+�+(p2 � m2), (2⇡)�3/2eihx,pi ↵ = (2⇡)�3/2⌦ �+(p2 � m2), C+eihx,pi ↵

= (2⇡)�3/2
Z

X+m
◆⇤+(C+eihx,pi) dµm

= (2⇡)�3/2
Z

X+m
c+(!p,p) ei(!pt�p·x) dµm

= (2⇡)�3/2
Z

R3

1
2!p

(c+ � s+)(p) ei(!pt�p·x) d3p.

Notice that this is a smooth function of x. We claim that it is, in fact, the inverse
Fourier transform of the distribution

p
2⇡C+�+(p2 � m2) and therefore a solution

to the Klein-Gordon equation. It is instructive to check directly that this integral
defines a solution to the Klein-Gordon equation so we will leave this to you.

Exercise 2.2.10. Verify by direct di↵erentiation that

'+(t, x) = (2⇡)�3/2
Z

R3

1
2!p

c+(!p,p) ei(!pt�p·x) d3p

satisfies the Klein-Gordon equation. Being a superposition of positive frequency
plane wave solutions, we will refer to '+ as a positive frequency solution or positive
energy solution to the Klein-Gordon equation.

To show that F�1
M

⇥p
2⇡C+�+(p2�m2)

⇤
= (2⇡)�3/2

R
R3

1
2!p

(c+�s+)(p) ei(!pt�p·x) d3p
we proceed as follows. A priori this inverse transform is a distribution so we must
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treat the function defined by the integral as a (regular) distribution as well. Now, the
value of the distribution

(2⇡)�3/2
Z

R3

1
2!p

(c+ � s+)(p) ei(!pt�p·x) d3p = (2⇡)�3/2
Z

X+m
c+(!p,p) ei(!pt�p·x) dµm

on a Schwartz function � 2 S(R1,3) is

Z

R1,3


(2⇡)�3/2

Z

X+m
c+(!p,p) ei(!pt�p·x) dµm

�
�(x) d4x

= (2⇡)�3/2
Z

X+m

Z

R1,3
c+(!p,p) ei(!pt�p·x) �(x) d4x dµm.

On the other hand, the definition of the inverse Fourier transform of the distributionp
2⇡C+�+(p2 � m2) gives, for each � 2 S(R1,3),

hF�1
M [
p

2⇡C+�+(p2 � m2)], � i = h
p

2⇡C+�+(p2 � m2), F�1
M [�] i

=
p

2⇡ h �+(p2 � m2), C+F�1
M [�] i

=
p

2⇡
Z

X+m
◆⇤+(C+F�1

M [�]) dµm

=
p

2⇡
Z

X+m
c+(!p,p)◆⇤+(F�1

M [�]) dµm.

But

◆⇤+(F�1
M [�]) = ◆⇤+

✓ 1
(2⇡)2

Z

R1,3
eihx,pi�(x) d4x

◆

=
1

(2⇡)2

Z

R1,3
ei(!pt�p·x)�(x) d4x

so

hF�1
M [
p

2⇡C+�+(p2 � m2)], � i = h
p

2⇡C+�+(p2 � m2), F�1
M [�] i

=
p

2⇡
Z

X+m
c+(!p,p)

 1
(2⇡)2

Z

R1,3
ei(!pt�p·x)�(x) d4x

�
dµm

= (2⇡)�3/2
Z

X+m

Z

R1,3
c+(!p,p) ei(!pt�p·x) �(x) d4x dµm

and therefore, as distributions,

F�1
M [
p

2⇡C+�+(p2 � m2)] = (2⇡)�3/2
Z

R3

1
2!p

(c+ � s+)(p) ei(!pt�p·x) d3p.
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Remark 2.2.5. Once again, everything we have just done for the upper branch X+m
of the mass hyperboloid Xm can equally well be done for the lower branch X�m by
simply beginning with a smooth function c� on X�m with compact support. This will
give rise to an analogous solution '�(t, x) to the Klein-Gordon equation.

Exercise 2.2.11. Let c� : X�m ! C be a smooth function with compact support and
show that

'�(t, x) = (2⇡)�3/2
Z

R3

1
2!p

c�(�!p,�p) e�i(!pt�p·x) d3p

satisfies the Klein-Gordon equation. Being a superposition of negative frequency
plane wave solutions, we will refer to '� as a negative frequency solution or negative
energy solution to the Klein-Gordon equation.

More generally, one can add a positive frequency solution '+(t, x) and a negative
frequency solution '�(t, x) to obtain a solution '(t, x) = '+(t, x) + '�(t, x) that is a
superposition of both positive and negative frequencies. Then '+ is referred to as
the positive frequency part of ' and '� is its negative frequency part.

Now notice that, since s+ is a di↵eomorphism of R3 onto X+m,

a = c+ � s+

can be regarded as an arbitrary smooth function with compact support of R3. We
can therefore write

'+(t, x) = (2⇡)�3/2
Z

R3

1
2!p

a(p) ei(!pt�p·x) d3p,

where a(p) is an arbitrary smooth function with compact support on R3. To obtain
a real solution we add the conjugate and arrive at

'(t, x) =
1

(2⇡)3/2

Z

R3

1
2!p

�
ei(!pt�p·x) a(p) + e�i(!pt�p·x) a(p)

�
d3p (2.25)

which is just (2.18).

Remark 2.2.6. The function a(p) on R3 need not have compact support in order for
(2.25) to be a solution to the Klein-Gordon equation. All that is required is enough
smoothness and a su�ciently rapid decay as kpk ! 1 to justify di↵erentiating
under the integral sign. For example, it is enough for a(p) to be a Schwartz function
(a notion that is not defined on general manifolds such as X±m).

We should also point out that one often finds in the literature integral representa-
tions for real solutions that di↵er from (2.25) in various powers of 2⇡ and !p. All of
these can be obtained from (2.25) by renormalizing a(p) and we will have occasion
to make one such cosmetic change a bit later.
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Notice that we have certainly not shown that every solution to the Klein-Gordon
equation is of the form (2.18). Indeed, all of the solutions we have found of this form
are smooth. The essential point to be taken from our discussion is that solutions to
Klein-Gordon on R1,3 are inverse Fourier transforms of distributions supported on
the mass hyperboloid and that, for the particularly nice distributions we have been
discussing, there is an explicit integral formula for these inverse transforms.

2.3 Complex Klein-Gordon Fields

Real and complex Klein-Gordon fields have di↵erent physical interpretations and
the purpose of this brief section is to try to get to the root of this di↵erence. We let
' denote a complex-valued solution to (⇤ + m2)' = 0. Write ' in terms of real and
imaginary parts as

' =
1p
2

('1 + i'2)

(the 2�1/2 is conventional). Then, since the Klein-Gordon equation is linear, '1 and
'2 are clearly real solutions to (⇤ + m2)' = 0 and so

' =
1p
2

('1 � i'2)

is another complex solution. Furthermore,

'1 =
1p
2

(' + ')

and

'2 =
�ip

2
(' � ').

Conversely, if '1 and '2 are two arbitrary real solutions to (⇤ + m2)' = 0, then ' =
1p
2

('1 + i'2) and ' = 1p
2

('1 � i'2) are two complex solutions. Complex solutions
are therefore nothing more or less than pairs of real solutions and occasionally it is
convenient to think of them explicitly in this way by employing vector notation.

' =
1p
2

 
'1

'2

!

We have defined the Klein-Gordon Lagrangian density L for real-valued func-
tions ' by
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L(') =
1
2

(@↵' @↵' � m2'2).

Since L must be real-valued, this clearly will not do if ' is complex. To handle the
complex case we write ' = 1p

2
('1 + i'2) and define

L(') = L('1) + L('2) =
1
2

✓
@↵'

1 @↵'1 + @↵'
2 @↵'2 � m2[ ('1)2 + ('2)2 ]

◆
.

Exercise 2.3.1. Show that

L(') = @↵' @↵ ' � m2''. (2.26)

Notice that the Klein-Gordon Lagrangian density (2.26) clearly has a U(1)-
symmetry that is not present in the real case. Indeed, if g = ei✓, ✓ 2 R, is any
complex number of modulus one, then '! g · ' = ei✓' leaves L invariant because

L(g · ') = @↵(g · ') @↵ (g · ') � m2(g · ')(g · ')

= (ei✓@↵') (e�i✓@↵ ') � m2(ei✓')(e�i✓ ')

= @↵' @
↵ ' � m2''

= L(').

If we identify U(1) with SO(2) via

⇣
ei✓

⌘
!

 
cos ✓ �sin ✓
sin ✓ cos ✓

!

and identify the complex function ' = 1p
2
('1 + i'2) with the pair

1p
2

 
'1

'2

!

we have an SO(2)-action under which

L(') =
1
2

✓
@↵'

1 @↵'1 + @↵'
2 @↵'2 � m2[ ('1)2 + ('2)2 ]

◆

is invariant.
We would now like to apply the version of Noether’s Theorem appropriate to

such internal symmetries (see Remark 2.1.6). SO(2) is 1-dimensional and therefore
so is its Lie algebra so(2). A generator of so(2) is

A =
 

0 �1
1 0

!
.

Consequently, we will have one infinitesimal internal symmetry
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Y = Y1@1 + Y2@2

and one corresponding conserved current

j↵ = �Y1 @L

@(@↵'1)
� Y2 @L

@(@↵'2)
, ↵ = 0, 1, 2, 3.

Exercise 2.3.2. Show that

j↵ = '1@↵'2 � '2@↵'1 = i (' @↵' � ' @↵'), ↵ = 0, 1, 2, 3.

As we have seen (in the discussion following Remark 2.1.6) one can now asso-
ciate with the complex Klein-Gordon field ' = 1p

2
('1 + i'2) a conserved charge

Z

R3
j0(t, x) d3x =

Z

R3
('1@0'2 � '2@0'1) d3x = i

Z

R3
(' @0' � ' @0') d3x

(assuming appropriate integrability and decay conditions). In this sense, complex
Klein-Gordon fields are charged. This charge is the result of a U(1)-symmetry pos-
sessed by complex fields, but not by real fields so real Klein-Gordon fields are un-
charged, or neutral. Notice that a complex field ' and its conjugate ' have oppo-
site charge so they represent distinct, independent physical fields; after quantization
these correspond to a particle and its antiparticle. Since all of these particles have
one (real or complex) component they have spin 0 and are therefore bosons (see
Remark 9.5 of [Nab5]).

The charge associated with a complex Klein-Gordon field is a U(1)-charge and,
to this extent at least, is analogous to ordinary electric charge. Whether or not it
should be identified with electric charge is a question that we simply cannot answer
at this stage. Electric charge is a coupling constant; it determines the strength of an
interaction with the electromagnetic field. Quite aside from the fact that we have not
discussed interactions at all, one should keep in mind that there is no known physical
particle corresponding to a classical Klein-Gordon field and therefore nothing to
watch interact with an electromagnetic field.

Remark 2.3.1. There is much more to be said about Klein-Gordon fields from the
point of view of physics. For those interested in pursuing this we suggest Chapter 9
of [BD1], Sections 2.2, 3.2, and 3.3 of [Ryd], or Chapter 1 of [Gri].
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2.4 Classical Klein-Gordon as a Hamiltonian System

2.4.1 Introduction

We would now like to turn from the Lagrangian to the Hamiltonian view of classi-
cal field theory. Needless to say, this involves a generalization of the Hamiltonian
picture of classical mechanics which is discussed in some detail in Section 2.3 of
[Nab5] and is summarized in Appendix A.3 of [Nab6]. Field theory requires an
infinite-dimensional version of this and here, as one might expect, there are techni-
cal issues to be addressed so we will proceed more slowly. We will consider only
the linear case (specifically, the Klein-Gordon field) where these technical issues are
less severe. As usual, we will provide specific references to the arguments we do not
include, but some general sources are [AM], [AMR], [Arn2], [ChM1], [Mar2], and
[GS1].

2.4.2 Motivation: Heat Flow and Bilinear Forms

The underlying mathematical structure of finite-dimensional Hamiltonian mechan-
ics is easy to describe. Each possible state of a physical system is represented by a
point in a symplectic manifold (P,!) called its phase space. The total energy of the
system in any state is given by a smooth, real-valued function H : P! R on phase
space which, together with !, determines a Hamiltonian vector field XH whose flow
completely describes the time evolution of the state. This flow is determined by
Hamilton’s equations, which are ordinary di↵erential equations on phase space. It
so happens that, with a few technical adjustments, the same basic philosophy can be
employed to describe the evolution of certain physical systems governed by partial
di↵erential equations. The technical adjustments amount to moving to an infinite-
dimensional phase space and finding appropriate infinite-dimensional analogues of
symplectic forms, Hamiltonian vector fields and flows. This is what we would like
to do here for the classical real Klein-Gordon field. Our basic references for this sec-
tion are [ChM1], [Evans], [Mar2], and [Mar3], but for some material on semigroups
of operators and the Hille-Yosida Theorem (reviewed in Appendix B) we will also
refer to Sections X.8 and X.9 of [RS1], Chapter 7 of [Pazy], Chapter 34 of [Lax],
and Chapters IX and XIV of [Yos].

Before proceeding with the formal definitions we will try to motivate some of
what is coming by revisiting an old friend from [Nab5], where we had a brief en-
counter with the heat flow on R (Example 5.2.12 and Example 8.4.8 of [Nab5]).
Although this system is not “Hamiltonian” in the sense we just described, it sheds
much light on many of the issues we will need to address. We consider the Cauchy
problem
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@ 

@t
� � = 0, (x, t) 2 R ⇥ (0,1)

(2.27)
lim
t!0+

 (x, t) =  0(x), x 2 R,

for the heat equation, where we write � for the 1-dimensional spatial Laplacian
(second derivative with respect to x). There exists a strongly continuous, contractive
semigroup {Tt}t�0 of bounded operators on L2(R) which has the property that, if the
initial state  0 is in L2(R), then the state at time t is  t(x) =  (x, t) = (Tt 0)(x);
see Exercise 5.2.18 of [Nab5] and also Example 8.4.8 of [Nab5]. This is called the
heat semigroup and it describes the “flow” of the solution from its initial state to its
state at time t in precisely the same way that the flow of a Hamiltonian vector field
describes the evolution of the state in classical mechanics.

Remark 2.4.1. Working in L2(R) is just a sly way of introducing boundary con-
ditions at infinity, that is, growth conditions on the solutions as |x| ! 1. Other
such growth conditions are certainly possible and when we formulate the general
definitions we will allow for this by assuming only that the flow takes place in a
Banach space (such as some other Lp-space). L2 is particularly natural for our pur-
poses since the energy of a field configuration is generally defined to be the sum of
various squared L2-norms.

The question we would now like to address is whether or not the “flow” on L2(R)
described by the semigroup {Tt}t�0 can be regarded as, in some sense, the flow of a
“vector field” on L2(R). Here matters become a bit more ticklish and we would like
to explain why. For any u 2 L2(R), u(t) = Ttu describes a curve in L2(R). Ideally,
one would like to regard this as an integral curve of the “vector field” we are hoping
to define. In the best of all possible worlds u(t) would be di↵erentiable and the heat
equation @u

@t = �u would be equivalent to

du
dt
= �u,

where du
dt = limh!0

Tt+hu�Ttu
h with the limit computed in the Hilbert space L2(R).

Remark 2.4.2. Take careful note of the fact that du
dt and @u

@t are very di↵erent t-
derivatives (see Exercise 6.2.1 of [Nab5] and the Remark preceding it).

In this form the equation is analogous to a first order linear equation dx
dt = Ax on

Rn, where A is some n ⇥ n matrix (that is, linear operator on Rn). In this finite-
dimensional context we can think of A as a vector field on Rn whose value at any
point x is Ax and then dx

dt = Ax is the equation for its integral curves, which always
exist. But now the issues we must deal with come into focus. The Laplacian � is
an unbounded linear operator on L2(R), defined only on the dense, linear subspace
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H2(R) of L2(R) so our equation makes sense only on this subspace. Moreover, even
if u 2 H2(R), �u is generally not in H2(R), but only in L2(R) and is therefore
not “tangent to H2(R)” in the usual sense (the tangent space to a linear space is
that same linear space). This suggests that a “vector field” on L2(R) will generally
be defined only on a dense linear subspace and will need to take values outside
this subspace. In this case, it may not be so clear what one means by the “flow”
of the “vector field” and it is certainly not clear that, whatever it means, it must
exist. These di�culties are resolved (to the extent that they can be resolved) by the
general theory of semigroups of operators and the famous Hille-Yosida Theorem
and we have reviewed what we need of this in Appendix B.

There is one more item that deserves a bit of preliminary discussion. On a finite-
dimensional manifold P a symplectic form ! is, by definition, nondegenerate. This
means that, at each point p 2 P, the mapping vp ! ◆vp! = !(vp, · ) is an isomor-
phism of Tp(P) onto T ⇤p(P). Because both of these vector spaces are of the same
finite-dimension this is equivalent to the map being injective. However, we will not
be operating in finite-dimensions here so “injective” is no longer the same thing as
“isomorphism” and it so happens that, for many of the interesting examples, “iso-
morphism” is too much to ask. To describe some of these examples, however, we
first need to set the stage .

We consider a real Banach space E. Suppose we are given a continuous, skew-
symmetric, bilinear form ⌦ : E ⇥ E! R on E. Then ⌦ determines a 2-form ! on E

in the following way. For any e 2 E the tangent space Te(E) to E at e is canonically
identified with E and we will not distinguish between their elements notationally.
Now define

!e : Te(E) ⇥ Te(E)! R

by

!e(v,w) = ⌦(v,w), 8v,w 2 E.

Since ! is constant in e, it is both smooth and closed and it is nondegenerate exactly
when the bilinear form ⌦ has the property that the map

⌦[ : E! E⇤

defined by

⌦[(v) = ◆v⌦ = ⌦(v, · )

is injective. We will see in the next Lemma that, if the Banach space E is not reflexive
(Section 4.10 of [Fried]), then ⌦[ cannot be an isomorphism of Banach spaces.

Lemma 2.4.1. Let E be a real Banach space and ⌦ : E ⇥ E ! R a continuous,
skew-symmetric, bilinear form on E. If the map ⌦[ : E ! E⇤ is an isomorphism,
then E is reflexive.
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Proof. We assume that ⌦[ is an isomorphism and show that E is reflexive, that is,
that the natural inclusion  : E ! E⇤⇤, of E into its second dual E⇤⇤ is a Banach
space isomorphism of E onto E⇤⇤.

Remark 2.4.3. Recall that (e) = e⇤⇤, where e⇤⇤(�) = �(e) for every � 2 E⇤. Recall
also that, if E is reflexive, then  is actually an isometric isomorphism of E onto E⇤⇤

(Theorem 4.10.2 of [Fried]).

Since ⌦[ : E! E⇤ is an isomorphism, so is (⌦[)�1 : E⇤ ! E.

Exercise 2.4.1. Show that the map ((⌦[)�1)⇤ : E⇤ ! E⇤⇤, which takes ↵ 2 E⇤ to
((⌦[)�1)⇤↵ 2 E⇤⇤ defined by

⇥
((⌦[)�1)⇤↵

⇤
(�) = ↵

�
(⌦[)�1�

� 8� 2 E⇤

is also an isomorphism and therefore

�((⌦[)�1)⇤ � ⌦[ : E! E⇤⇤

is an isomorphism. Complete the proof by showing that �((⌦[)�1)⇤ � ⌦[ = .
ut

Next we will describe a general procedure for manufacturing such examples that
we will put to use in the next section.

Example 2.4.1. Let B be an arbitrary real Banach space, B⇤ its dual and E = B�B⇤.
Define ⌦ : E ⇥ E! R by

⌦( (a,↵), (b, �) ) = �(a) � ↵(b), 8a, b 2 B and 8↵, � 2 B⇤.

Exercise 2.4.2. Show that ⌦ is bilinear, skew-symmetric, and continuous and that
⌦[ is injective. Hint: For the injectivity of ⌦[ use the fact that the continuous linear
functionals on a Banach space separate points; this is a consequence of the Hahn-
Banach Theorem (Corollary 4.8.5 of [Fried]).

We will show now that ⌦[ is surjective and therefore an isomorphism by the Open
Mapping Theorem (Theorem 4.6.1 of [Fried]) if and only if B is reflexive. For this
we note that, for any (a,↵) 2 E = B �B⇤,

⌦[(a,↵) = ◆(a,↵)⌦ = ⌦( (a,↵), ( · , · ) ).

For any such (a,↵) in E, (�↵, (a)) = (�↵, a⇤⇤), acting on B�B⇤ coordinatewise, is
in E⇤. Specifically,
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(�↵, (a))(b, �) = �↵(b) + a⇤⇤(�) = �(a) � ↵(b) = [ ◆(a,↵)⌦ ](b, �) = [⌦[(a,↵) ](b, �).

Consequently,

⌦[(a,↵) = (�↵, (a)).

In particular, ⌦[ is surjective if and only if  is surjective, that is, if and only if B is
reflexive.

It is worth recording a special case of this example.

Example 2.4.2. Let H be a real Hilbert space. Then H is reflexive and, moreover, we
can canonically identify H⇤ with H by the Riesz Representation Theorem (Theorem
6.2.4 of [Fried]). Let E = H �H⇤ = H �H and define ⌦ : E ⇥ E! R by

⌦( (e1, e2), ( f1, f2) ) = he1, f2iH � he2, f1iH.

Then⌦ is a continuous, skew-symmetric bilinear form on H�H and⌦[ : H�H !
H⇤ �H⇤ = H �H is a linear homeomorphism.

2.4.3 Infinite-Dimensional Hamiltonian Systems

With the examples from the preceding section as motivation we can now proceed
with the general definitions. Let E be a real Banach space. Any continuous, bilinear
form B : E ⇥ E ! R induces a continuous linear map B[ : E ! E⇤ defined by
B[(e) = ◆eB = B(e, · ). B is said to be weakly nondegenerate if B[ is injective and B
is strongly nondegenerate if B[ is an isomorphism of Banach spaces. By the Open
Mapping Theorem (Theorem 4.6.1 of [Fried]), B is strongly nondegenerate if and
only if it is weakly nondegenerate and B[ is surjective. A weak symplectic form on
E is a 2-form ! on E such that

1. ! is closed (d! = 0), and
2. for each e 2 E, !e : Te(E) ⇥ Te(E)! R is weakly nondegenerate.

If, in (2), each !e is strongly nondegenerate, then ! is a strong symplectic form
(often called simply a symplectic form).

Example 2.4.3. The information in Examples 2.4.1 and 2.4.2 provides a wide class
of examples, both weak and strong. If B is an arbitrary real Banach space, then
one defines a (constant) 2-form ! on B � B⇤ by !( (a,↵), (b, �) ) = �(a) � ↵(b)
at each point of B � B⇤ and for all (a,↵), (b, �) 2 B � B⇤. If B is reflexive, then
! is a strong symplectic form on B � B⇤. If B is not reflexive, then ! is a weak
(but not strong) symplectic form on B � B⇤. When B is a real Hilbert space H

one identifies H⇤ with H by the Riesz Representation Theorem (Theorem 6.2.4 of
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[Fried]) and the strong symplectic form ! on H is given, at each point of H �H,
by !( (e1, e2), ( f1, f2) ) = he1, f2iH � he2, f1iH for all (e1, e2), ( f1, f2) 2 H �H. The
special case in which H = L2(R3;R) will put in an appearance soon when we return
to the Klein-Gordon field.

Remark 2.4.4. L2(R3;R) is the real Hilbert space of real-valued square integrable
functions on R3.

The first thing one would probably like to know about an infinite-dimensional
strong/weak symplectic form is whether or not there is an infinite-dimensional ver-
sion of the Darboux Theorem (Theorem A.3.2 of [Nab6]). The answer is yes/no. In
1969, Weinstein [Weins] used an idea of Moser [Mos] to give a remarkably sim-
ple and elegant proof that any strong symplectic form on a Banach space is locally
constant.

Theorem 2.4.2. Let! be a strong symplectic form on the Banach space E. Then, for
each e 2 E, there exists an open neighborhood Ue of e in E, a constant symplectic
form !0 on E, an open neighborhood V0 of 0 2 E, and a di↵eomorphism F of Ue
onto V0 such that F⇤!0 = !.

Remark 2.4.5. This immediately implies the same result for Banach manifolds and
so, in particular, for finite-dimensional manifolds (of even dimension, of course). A
bit of linear algebra then gives the usual coordinate form of the finite-dimensional
Darboux Theorem. Proofs of Theorem 2.4.2 are available in [Weins], on pages 29-
30 of [Mar2] and on page 535 of [AMR]; one can also consult Theorem 8.1 of
[Lang3]. On the other hand, in 1972, Marsden [Mar1] constructed examples of weak
symplectic forms on Hilbert spaces that are not locally constant. One can prove the
local constancy of certain types of weak sympletic forms, but additional hypotheses
are required (see, for example, Theorem 1.2 of [Mar3]).

The examples of most interest to us here are only weak symplectic forms and
this is the source of some of the technical issues we will need to confront in this
section. We begin by trying to isolate the appropriate phase space and weak sym-
plectic form for the Hamiltonian formulation of Klein-Gordon theory. These are, of
course, choices we must make and it would be naive to think that the choices are
uniquely determined and can be “derived” in any meaningful sense. Nevertheless, it
is the physics that must point us in the right direction and that is where we will start.

The phase space of a physical system is, in a very real sense, only the mathemati-
cal arena in which the discussion takes place; physicists very often do not mention it
at all. The physics is contained in the Hamiltonian (total energy). We will therefore
adopt the point of view that the phase space should be regarded as just the natural
domain of the Hamiltonian and so what we should do is write down this Hamilto-
nian and let it tell us where it wants to be defined. Fine, but how do you write down
Hamiltonians? This is actually a nontrivial question and it is a question for physi-
cists, not mathematicians. However, one can find a hint in Section 2.3 of [Nab5] .
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In classical mechanics one often arrives at the Hamiltonian H(q, p) from the energy
function EL(q, q̇) associated with the Lagrangian L(q, q̇) by introducing conjugate
momenta p = @L/@q̇ and rewriting EL in terms of q and p, that is, by moving EL
from the tangent bundle to the cotangent bundle via the Legendre transformation.
The result is that EL(q, q̇) = @L

@q̇ q̇ � L(q, q̇) becomes H(q, p) = pq̇ � L(q, q̇), where it
is understood that the q̇ are now written in terms of q and p by solving p = @L/@q̇
for q̇.

The usual intuition behind moving from the formalism of mechanics to the for-
malism of field theory goes something like this. The discrete index i labeling the
“degrees of freedom” (the coordinates in the configuration space M) is replaced by
the continuous position variable x (one degree of freedom for each position); the
coordinates q themselves (functions of t along the trajectory) are replaced, at each
fixed value of t, by the value '(t, x) of the field ' at time t and location x; the q̇ (also
functions of t along the trajectory) are replaced, at each fixed value of t, by the time
derivatives @0' of the coordinates (often denoted '̇ in this context). Let’s see what
happens if we just formally apply this admittedly rather heuristic algorithm in the
case of the Klein-Gordon field (which is precisely what physicists do in practice).

We already know that the Lagrangian density for the Klein-Gordon field is

L(', @0', @1', @2', @3') =
1
2
�

(@0')2 � (@1')2 � (@2')2 � (@3')2 � m2'2 �
.

Now define the conjugate momentum density associated with L by

@L

@(@0')
= @0'

de f
= '̇.

Writing r' for the spatial gradient (@1', @2', @3') one obtains, as the analogue of
the Hamiltonian in mechanics, the Hamiltonian density

H(', '̇) =
1
2
�
'̇2 + r' · r' + m2'2 �

. (2.28)

The spatial integral

H(', '̇) =
Z

R3
H(', '̇) d3x = 1

2

Z

R3

�
'̇2 + r' · r' + m2'2 �

d3x (2.29)

of the Hamiltonian density is then called simply the Hamiltonian.
Needless to say, there is nothing that pretends to be a proof here. We have ar-

rived, in the manner of the physicists, at a potential candidate for the Hamiltonian
of Klein-Gordon theory. We must now see if we can fit this candidate neatly into a
rigorous view of an infinite-dimensional Hamiltonian system. The first step involves
a somewhat subtle change in perspective, but one that we have seen before in me-
chanics. A solution '(t, x) to the Klein-Gordon equation is a function of both t and x
and, with this interpretation, H, as defined by (2.29) is a function of t. However, our
goal is to regard the time evolution of the system as a flow along the integral curves
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of a vector field on phase space and in this interpretation t enters only as a parameter
along these integral curves. For this we must look again at (2.29) and forget where
' and '̇ came from so that we can view them as simply independent variables in
some appropriate spaces of functions on R3 (just as we forgot, in Section 2.3 of
[Nab5], where q, q̇ and q, p came from and regarded them as coordinates on the tan-
gent and cotangent bundles, respectively). But what are these “appropriate spaces
of functions on R3 ” ? Notice that (2.29) is just a sum of squared L2(R3;R) norms.
The first term indicates that '̇ must therefore be in L2(R3;R) for each t. The second
and third terms require that both ' and its gradient r' must also be in L2(R3;R) for
each t and so we find that ' must be in H1(R3;R) for each t. Consequently,

(', '̇) 2 H1(R3;R) � L2(R3;R)

and H can be regarded as simply a smooth real-valued function on H1(R3;R) �
L2(R3;R), provided r' is now taken to be the distributional gradient (see Appendix
A). We would like to adopt H1(R3;R) � L2(R3;R) as our phase space, but this will
only make sense if H1(R3;R) � L2(R3;R) admits at least a weak symplectic form.
It does, as we will now show.

Example 2.4.4. Notice that H1(R3;R) � L2(R3;R) is a dense linear subspace of
L2(R3;R) � L2(R3;R), although H1(R3;R) and L2(R3;R) do not have the same
inner products. We already know that L2(R3;R) � L2(R3;R) admits a natural
strong symplectic form ! : L2(R3;R) � L2(R3;R) ! R given, at every point,
by !( (e1, e2), ( f1, f2) ) = he1, f2iL2(R3;R) � he2, f1iL2(R3;R) for all (e1, e2), ( f1, f2) 2
L2(R3;R) � L2(R3;R). We will use the same formula to define ! at every point of
H1(R3;R) � L2(R3;R) by

!( (', '̇), ( ,  ̇) ) = h',  ̇iL2(R3;R) � h'̇, iL2(R3;R)

=

Z

R3
(' ̇ � '̇ ) d3x

for all (', '̇), ( ,  ̇) 2 H1(R3;R) � L2(R3;R). This is clearly (at least) a weak sym-
plectic form on H1(R3;R) � L2(R3;R). As you will now show, that’s all it is.

Exercise 2.4.3. Argue as in Example 2.4.1 to show that ![(', '̇) = (�'̇,') and con-
clude that ![ is not surjective so ! is not a strong symplectic form on H1(R3;R) �
L2(R3;R).

Although we have not yet fully justified the terminology, we are su�ciently en-
couraged by what we have seen thus far to refer to H1(R3;R) � L2(R3;R) as the
Klein-Gordon phase space. The rest of the program consists of finding a Hamilto-
nian vector field on this phase space whose flow describes the time evolution of the
Klein-Gordon field (as determined by the Klein-Gordon equation). Our discussion
of the heat equation in Section 2.4.2, however, suggests that we will require a new
notion of “vector field”, defined on only a dense linear subspace and not necessarily
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taking values in this subspace, and that the notion of a “flow” for such a vector field
may become problematic.

To see where such a “vector field” might come from let’s write the Klein-Gordon
equation as @2'

@t2 = (� � m2)' and employ the usual device of translating this into a
first order system of equations. Thus, we let u = ' and v = @'/@t = '̇ to obtain

(ut, vt) = (v, (� � m2)u),

which we write more suggestively as
 

ut
vt

!
=

 
0 id

� � m2 0

!  
u
v

!
.

Now take � to be the distributional Laplacian onR3 and consider the linear operator
 

0 id
� � m2 0

!

that carries (u, v) onto (v, (� � m2)u). Since there is no time dependence we can
regard it as a linear operator on H1(R3;R)�L2(R3;R). It is, however, an unbounded
operator since it is defined only when v 2 H1(R3;R) and �u 2 L2(R3;R). The
domain of the operator is therefore

H2(R3;R) � H1(R3;R),

which is a dense linear subspace of H1(R3;R) � L2(R3;R). It is this operator that
we would like to identify with the “vector field” we are after, but first we should
introduce a few general definitions.

Let E be a real Banach space and D a dense, linear subspace of E that is complete
in some norm stronger than that of E (such as H2(R3;R)�H1(R3;R) in H1(R3;R)�
L2(R3;R)). In particular, D is also a Banach space. Let X : D ! E be a linear
operator on E with domain D. We canonically identify each tangent space Te(E)
with E and thereby regard the value of X at x 2 D as a tangent vector X(x) 2 E =
Tx(E) to E at x. Thought of in this way we will refer to X as a (linear) vector field
on D with values in E. Now suppose E has defined on it a weak symplectic form
!. Then the vector field X is said to be Hamiltonian if there exists a smooth, real-
valued function H : D ! R on D such that dHx(e) = !x(X(x), e) for every x 2 D
and every e 2 Tx(D) = D ✓ E = Tx(E). From this it follows that dHx extends to a
bounded linear operator on E = Tx(E) so we will write this condition simply as

dH = ◆X!.

When such an H exists and has been fixed we will generally write X as XH .

Remark 2.4.6. A few remarks are in order here. Since ! is assumed to be only a
weak symplectic form, it need not be the case that such an XH exists for any given
H and soon this will complicate the problem of defining Poisson brackets. We point
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out also that most of what we will have to say here extends in a fairly straightforward
way to Banach manifolds, but we have restricted our attention to linear problems
and for these it is su�cient to consider Banach spaces; for a more complete story
one can consult [ChM1] and [Mar3].

Example 2.4.5. Let E = H1(R3;R) � L2(R3;R) be the phase space for the Klein-
Gordon field with its weak symplectic form ! given, at each point of E, by

!( (', '̇), ( ,  ̇) ) = h',  ̇iL2(R3;R) � h'̇, iL2(R3;R)

for all (', '̇), ( ,  ̇) 2 H1(R3;R)�L2(R3;R). Also let D = H2(R3;R)�H1(R3;R).
We consider the vector field X defined on D with values in E given by

X(', '̇) = ('̇, (� � m2)') 8(', '̇) 2 D.

We claim that X = XH , where

H(', '̇) =
1
2

Z

R3

�
'̇2 + r' · r' + m2'2 �

d3x = 1
2
� h'̇, '̇i + hr',r'i + m2h','i �,

and the inner products are all in L2(R3;R). To see this we must prove that dH = ◆X!.
In more detail, this is

dH(','̇)( ,  ̇) = !( ('̇, �' � m2'), ( ,  ̇) )

for all (', '̇) 2 D and all ( ,  ̇) 2 T(','̇)(D) = D. For the right-hand side we get

!( ('̇, �' � m2'), ( ,  ̇) ) = h'̇,  ̇i � h�', i + m2h', i.

For the left-hand side,

dH(','̇)( ,  ̇) =
d
d"

H( (', '̇) + "( ,  ̇) )|"=0.

Exercise 2.4.4. Compute this derivative to show that

dH(','̇)( ,  ̇) = h'̇,  ̇i + hr',r i + m2h', i.

Thus, to complete the proof we need only show that hr',r i = �h�', i. In other
words, we must show that

Z

R3

✓ @'
@x1

@ 

@x1 +
@'

@x2
@ 

@x2 +
@'

@x3
@ 

@x3

◆
d3x

= �
Z

R3

✓ @2'

(@x1)2 +
@2'

(@x2)2 +
@2'

(@x3)2 
◆

d3x.

The integrals make sense because ' and  are in H2(R3;R). If ' and  are Schwartz
functions, then each term on the left-hand side is equal to the corresponding term
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on the right-hand side by the Integration by Parts formula . The equality follows in
general from the density of S(R3;R) in H2(R3;R).

Where do we stand at this point? Our goal is to represent the time evolution of the
Klein-Gordon field as the flow of a Hamiltonian vector field on a weak symplectic
Banach space. Thus far we have isolated a Banach (actually, Hilbert) space with a
weak symplectic form and a vector field on it that is the Hamiltonian vector field cor-
responding to our candidate for the Klein-Gordon Hamiltonian. The essential item,
however, is the flow for it is this that describes the time evolution of the system. For
a finite-dimensional manifold and a tangent vector field defined everywhere on an
open subset of the manifold the existence of a flow (or local flow) is a consequence
of basic existence and uniqueness theorems for ordinary di↵erential equations. Our
situation is quite di↵erent, however. The Banach space is infinite-dimensional, the
vector field/operator is defined only on a dense linear subspace and its values are
not tangent to this subspace in the usual sense. One needs to define precisely what
is meant by a “flow” in this context and have theorems available that establish their
existence. All of this is to be found in the theory of semigroups of operators due to
Hille and Yosida, which is discussed in some detail in Remark 8.55 of [Nab5] and
summarized in Appendix B..

Example 2.4.6. (Klein-Gordon as a Hamiltonian Flow) We return now to the Klein-
Gordon phase space E = H1(R3;R) � L2(R3;R), with its weak symplectic form
!( (', '̇), ( ,  ̇) ) = h',  ̇iL2(R3;R) � h'̇, iL2(R3;R), Hamiltonian

H(', '̇) =
1
2

Z

R3

�
'̇2 + r' · r' + m2'2 �

d3x

=
1
2
� h'̇, '̇iL2(R3;R) + hr',r'iL2(R3;R) + m2h','iL2(R3;R)

�
,

and corresponding Hamiltonian vector field XH , defined on D(XH) = H2(R3;R) �
H1(R3;R) by XH(', '̇) = ('̇, (� � m2)'). We have two objectives. First we will
indicate how the Hille-Yosida Theorem can be applied to show that XH is the in-
finitesimal generator for a C0-semigroup {Tt}t�0 of operators on E. Given this, one
can “flow” any given initial state in E to its state at time t > 0 by Tt and we will
indicate why this flow actually tracks the evolution of the Klein-Gordon field, that
is, satisfies the Klein-Gordon equation.
Remark 2.4.7. Twice we have used the word “indicate” rather than “prove”. Careful
proofs would require a number of results on the existence and uniqueness of solu-
tions to certain partial di↵erential equations. We will try to give the flavor of the
arguments without a lengthy digression into details that would take us too far afield.
For those who need more, Theorem 6 in Section 7.4 of [Evans] contains a very
readable account of the application of Hille-Yosida, as does Section 7.4 of [Pazy].
Section XIV.3 of [Yos] is a bit more condensed, but discusses both the application of
Hille-Yosida and the fact that the resulting flow gives solutions to the Klein-Gordon
equation. Finally, we must, in good conscience, point out that in glossing over the
PDEs we have, in fact, glossed over the essential ingredient, that is, the fact that the
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Klein-Gordon operator K = ��+m2 is elliptic. Elliptic regularity results are crucial
to the success of the procedure we will describe. For reference we will record the
version of the Hille-Yosida Theorem that we require (see Appendix B).

Theorem 2.4.3. (Hille-Yosida Theorem) Let E be a Banach space and A : D(A)! E

a densely defined, closed operator on E. Then A is the infinitesimal generator of a
contractive semigroup of operators on E if and only if

1. (0,1) ✓ ⇢(A), and
2. kR�(A)k = k(� � A)�1k  1

� 8� > 0.

Before getting started it will be convenient to introduce a bit of notation and an
equivalent norm on H1(R3;R) � L2(R3;R). For u, v 2 H1(R3;R) define

B[u, v] = hru,rviL2(R3;R) + m2hu, viL2(R3;R)

so that

B[u, u] = kruk2L2(R3;R) + m2kuk2L2(R3;R).

Except for the factor of m2 these are just the usual H1(R3;R)-inner product and
squared norm.

Exercise 2.4.5. Show that B[u, u]1/2 is a norm on H1(R3;R) and is equivalent to
k kH1(R3;R), that is,

ckukH1(R3;R)  B[u, u]1/2  CkukH1(R3;R)

for some constants 0 < c  C.

Now, for (�1, 1), (�2, 2) 2 H1(R3;R) � L2(R3;R), define

B( (�1, 1), (�2, 2) ) = B[�1, �2] + h 1, 2iL2(R3;R)

and write

||| (�, ) |||2 = B( (�, ), (�, ) ).

Then ||| ||| is a norm on H1(R3;R)�L2(R3;R) and is equivalent to k kH1(R3;R)�L2(R3;R).

Exercise 2.4.6. Show that B is symmetric, bilinear and positive semi-definite so that
there is a Cauchy-Schwarz Inequality that takes the form

���B ( (�1, 1), (�2, 2) )
���  ||| (�1, 1) ||| ||| (�2, 2) |||.

Now we’ll return to the Klein-Gordon Hamiltonian flow. The objective is to ver-
ify the hypotheses of the Hille-Yosida Theorem. Since we know that D(XH) =
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H2(R3;R) � H1(R3;R) is dense in E = H1(R3;R) � L2(R3;R), the first thing
to check is that the operator XH(', '̇) = ('̇, (� � m2)') is closed. For this we
let {('k, '̇k)}1k=1 be a sequence in D(XH) satisfying ('k, '̇k) ! (', '̇) in E and
XH('k, '̇k) ! ( f , g) in E. We must show that (', '̇) is in D(XH) and XH(', '̇) =
( f , g). Part of this is easy. Since '̇k ! '̇ in L2(R3;R) and XH('k, '̇k) = ('̇k, (� �
m2)'k)! ( f , g) in E we must have '̇k ! f in H1(R3;R) and therefore in L2(R3;R)
so f = '̇. Moreover, (�� + m2)'k ! �g in L2(R3;R). For the rest we will need an
estimate.

Lemma 2.4.4. Let K : H2(R3;R) ! L2(R3;R) be the operator K = �� + m2.
Then K is self-adjoint on H2(R3;R) and, moreover, there exists a positive constant
C such that, for every ' 2 H2(R3;R),

k'kH2(R3;R)  C
� kK'kL2(R3;R) + k'kL2(R3;R)

�
.

Proof. The self-adjointness of K follows from Theorem 8.5 of [Nab5]. Now notice
that it will su�ce to prove the inequality for the dense subset S(R3;R) of H2(R3;R)
so we let ' 2 S(R3;R). Write

k'k2H2(R3;R) =

Z

R3
'2 d3x +

3X

i=1

Z

R3
@i' @i' d3x +

3X

i, j=1

Z

R3
@i@ j' @i@ j' d3x.

Exercise 2.4.7. Integrate by parts, reverse the order of the derivatives and integrate
by parts again to show that

3X

i, j=1

Z

R3
@i@ j' @i@ j' d3x = k�' k2L2(R3;R).

Exercise 2.4.8. Integrate by parts and use the inequality |ab|  1
2 (a2 + b2), a, b 2 R,

to show that

3X

i=1

Z

R3
@i' @i' d3x  1

2
� k'k2L2(R3;R) + k�'k2L2(R3;R)

�
.

Consequently,

k'k2H2(R3;R) 
3
2

✓
k'k2L2(R3;R) + k�' k2L2(R3;R)

◆
.

Since ��' = K' � m2' we have k�' kL2(R3;R)  kK'kL2(R3;R) + m2k'kL2(dR3;R) and
so
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k'kH2(R3;R) 
r

3
2

✓
k'kL2(R3;R) + k�' kL2(R3;R)

◆


r

3
2

✓
k'kL2(R3;R) + kK'kL2(R3;R) + m2k'kL2(R3;R)

◆


r

3
2

✓
(1 + m2)k'kL2(R3;R) + (1 + m2)kK'kL2(R3;R)

◆

so taking C =
q

3
2 (1 + m2) completes the proof. ut

Now, since 'k ! ' and K'k ! �g in L2(R3;R), these sequences are Cauchy in
L2(R3;R). Lemma 2.4.4 implies that

k'k � 'lkH2(R3;R)  C
� kK'k � K'lkL2(R3;R) + k'k � 'lkL2(R3;R)

�

and therefore {'k}1k=1 is Cauchy in H2(R3;R). Consequently, {'k}1k=1 converges in
H2(R3;R). It must converge to ' since H2-convergence implies L2-convergence.
Thus, ' 2 H2(R3;R) = D(K). Since K is self-adjoint on D(K) it is closed and so
'k ! ', K'k ! �g and ' 2 D(K) imply K' = �g. Thus, (', '̇) 2 D(XH) and
XH(', '̇) = ('̇,�K') = ( f , g) as required. We conclude that XH : D(XH) ! E is a
densely defined, closed operator.

Next we must check the resolvent conditions in the Hille-Yosida Theorem. Let �
be a nonzero real number and consider the operator �� XH : D(XH)! E. Then, for
any (', '̇) 2 D(XH),

(� � XH)(', '̇) = (�' � '̇, �'̇ + K').

Thus, for any ( f , g) 2 E, the equation (� � XH)(', '̇) = ( f , g) is equivalent to the
system

�' � '̇ = f (2.27)

�'̇ + K' = g (2.28)

and these give

�2' + K' = � f + g.

With K = �� + m2 we can write this as

' � ⌫�' = F,

where ⌫ = (�2 +m2)�1 > 0 and F = ⌫(� f + g) 2 L2(R3;R). Now we need a theorem
from partial di↵erential equations. The following is a special case of Lemma 4.2,
Section 7.4, of [Pazy].
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Lemma 2.4.5. If ⌫ > 0 and F 2 L2(R3;R), then there is a unique ' 2 H2(R3;R)
satisfying

' � ⌫�' = F.

Thus, we have a unique H2(R3;R)-solution ' to �2' + K' = � f + g and then
'̇ = �'� f 2 H1(R3;R) gives the unique solution (', '̇) 2 D(XH) to (��XH)(', '̇) =
( f , g) for any ( f , g) 2 E. We conclude that the operator �� XH : D(XH)! E is one-
to-one and onto for any nonzero � 2 R. Consequently, every nonzero real number
(and, in particular, every positive real number) is in the resolvent set ⇢(XH) and the
resolvent operator R�(XH) = (� � XH)�1 : E! D(XH) is bounded for any such �.

Next we must estimate the norm of the resolvent operator. Whenever (2.27) and
(2.28) are satisfied and � > 0 we write (', '̇) = R�(XH)( f , g) and our objective is to
show that ||| (', '̇) |||  1

� ||| ( f , g) |||. From (2.28) and (2.27)

�'̇ + K' = g) �'̇ � �' + m2' = g

) �h'̇, '̇iL2(R3;R) + h��', '̇iL2(R3;R) + m2h', '̇iL2(R3;R) = hg, '̇iL2(R3;R)

) �k'̇k2L2(R3;R) + B[', '̇] = hg, '̇iL2(R3;R)

) �k'̇k2L2(R3;R) + B[', �' � f ] = hg, '̇iL2(R3;R)

) �
⇥ k'̇k2L2(R3;R) + B[',']

⇤
= hg, '̇iL2(R3;R) + B[ f ,']

The Cauchy-Schwarz Inequality applied to hg, '̇iL2(R3;R)+B[ f ,'] = B(( f , g), (', '̇))
gives

�

k'̇k2L2(R3;R) + B[',']

�



kgk2L2(R3;R) + B[ f , f ]

�1/2
k'̇k2L2(R3;R) + B[',']

�1/2

and then

k'̇k2L2(R3;R) + B[',']

�1/2
 1
�


kgk2L2(R3;R) + B[ f , f ]

�1/2

which is just ||| (', '̇) |||  1
� ||| ( f , g) |||.

We have verified all of the hypotheses of the Hille-Yosida Theorem B.0.3 and
therefore conclude that XH : D(XH) ! E is the infinitesimal generator for a con-
tractive C0-semigroup {Tt}t�0 of operators on E. Stated otherwise, the Klein-Gordon
Hamiltonian vector field XH : H2(R3;R)�H1(R3;R)! H1(R3;R)�L2(R3;R) has
a flow on H1(R3;R)�L2(R3;R). The only question remaining is whether or not this
flow actually represents the time evolution of the Klein-Gordon field as it is specified
by the Klein-Gordon equation. More precisely, let ( f , g) 2 H1(R3;R) � L2(R3;R)
and flow ( f , g) by Tt for any t � 0, that is, define

('(t, x), '̇(t, x) ) = Tt( f , g).
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One would like to know then that '(t, x), defined in this way, is a solution to the
initial value problem

@2'

@t2 � �' + m2' = 0

'(0, x) = f (x)
@'

@t
(0, x) = g(x).

This is, indeed, the case, but not obviously so. If f and g are Schwartz functions,
then elliptic regularity results show that '(t, x) is smooth on all of R ⇥ R3 and
satisfies the initial value problem in the classical sense. Otherwise, '(t, x) is only a
distributional solution and there is more work to do. We will leave the matter at this
and simply refer to Chapter XIV, Section 3, of [Yos] for those who would like more
information.

We have seen how at least one classical field theory can be reformulated as a
Hamiltonian system. Technical di�culties arise due to the infinite-dimensionality
of the phase space, the “weakness” of the symplectic form, and the fact that the
Hamiltonian vector field is only densely defined. These di�culties persist when the
analogy with Hamiltonian mechanics is pushed further. Consider, for example, the
problem of defining Poisson brackets. We let E denote a real Banach space with a
weak symplectic form !. We have already seen that a smooth, real-valued function
f on E need not have a symplectic gradient, that is, there need not exist a vector
field Xf on E with d f = ◆Xf! and, even if it does exist, it will generally be defined
only on a dense linear subspace D(Xf ) of E. Let us suppose, however, that we have
two smooth, real-valued functions f and g on E for which Xf and Xg both exist, on
D(Xf ) and D(Xg), respectively. Then we can define the Poisson bracket

�
f , g

 
: D(Xf ) \D(Xg)! R

of f and g by
�
f , g

 
(x) = !x(Xf (x), Xg(x))

for every x 2 D(Xf ) \ D(Xg). Even in this best case scenario, however, one must
still contend with the possibility that D(Xf )\D(Xg) might consist of the zero vector
alone so that nothing much has been defined. This, in turn, complicates the issue of
determining conserved quantities. Recall that, in Hamiltonian mechanics, a smooth
real-valued function on the phase space is conserved (constant on the trajectories of
the Hamiltonian vector field) precisely when it Poisson commutes with the Hamilto-
nian ({ f ,H} = 0). The analogous notion in field theory would be a real-valued func-
tion on phase space that is constant on the trajectories of the flow of the Hamiltonian
vector field (which, of course, presupposes the existence of a flow). Since { f ,H} = 0
can now occur simply because D(Xf ) and D(XH) intersect trivially one cannot ex-
pect the situation to be quite so simple in field theory. An additional complication
arises from the fact that physically interesting quantities are themselves often not
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globally defined on phase space; even the Hamiltonian can be only densely defined
(see Example (b), page 316, of [ChM1]). All-in-all the issue of conservation laws
in field theory is considerably more delicate. We will conclude with just one simple
result that implies, in particular, the conservation of energy for the Klein-Gordon
field. The following is Theorem 1, Section 2, of [ChM1] and we will record the
proof here as well.

Theorem 2.4.6. Let E be a real Banach space and ! a weak symplectic form on E.
Let X : D(X) ! E be a vector field on D(X) ✓ E with values in E. Assume that X
is the infinitesimal generator of a C0-semigroup {Tt}t�0 of operators on E. Then the
following are equivalent.

1. ◆X! is a closed 1-form on D(X) (d(◆X!) = 0).
2. X is skew-symmetric with respect to !, that is,

!(X', ) = �!(', X ) 8', 2 D(X).

3. X = XH, where

H(') =
1
2
!(X',') 8' 2 D(X).

4. Each Tt preserves ! in the sense that T ⇤t ! = ! 8t � 0.

Moreover, if any one (and therefore every one) of these conditions is satisfied, then
energy is conserved in the sense that

H � Tt = H

on D(X) for every t � 0.

Proof. We will prove (1) , (2), (2) ) (3), (3) ) (1), (2) , (4) and then the
conservation of energy. Write ↵ for the 1-form ◆X!. Then, at any point x 2 D(X),
↵(x) is a real-valued linear functional on Tx(D(X)) = D(X) and we will write its
value at any ' 2 D(X) as

↵(x) · ' = !(X(x),').

By definition, the exterior derivative of ↵ is given by

d↵(x) · (', ) = (D↵(x) · ') ·  � (D↵(x) ·  ) · ',

where D↵(x) is the Fréchet derivative of ↵ at x (Section 1.1). Thus,
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d↵(x) · (', ) =
d
d"
↵(x + "')

���
"=0 ·  �

d
d"
↵(x + " )

���
"=0 · '

=
d
d"
!(X(x + "'), )

���
"=0 �

d
d"
!(X(x + " ),')

���
"=0

=
d
d"

[!(Xx, ) + "!(X', )]
���
"=0 �

d
d"

[!(Xx,') + "!(X ,')]
���
"=0

= !(X', ) � !(X ,')
= !(X', ) + !(', X )

so d↵ = 0 if and only if !(X', ) = �!(', X ) and this proves (1) , (2). Next we
assume X is skew-symmetric with respect to ! and let H : D(H) ! R be defined
by H(') = 1

2!(X',').

Exercise 2.4.9. Show that, for any x,' 2 D(X),

dH(x) · ' = d
d"

H(x + "')
���
'=0 = (◆X!)x'.

This proves (2)) (3). (3)) (1) is clear since ◆X! = dH implies d(◆X!) = d(dH) =
0.

Exercise 2.4.10. Let ', 2 D(X) and consider the real-valued function of t given
by t ! !(Tt',Tt ). Regard this as the composition

t ! (Tt',Tt )! !(Tt',Tt ).

Use the Chain Rule, the fact that ! is linear in each argument, and d
dt Tt(x) = XTt x

to show that

d
dt
!(Tt',Tt ) = !(XTt',Tt ) + !(Tt', XTt ).

Consequently, if (2) is satisfied, then !(Tt',Tt ) is constant and equal to !(', ).
Since this is true for any ', 2 D(X) and D(X) is dense in E, it is also true for
any ', 2 E and this proves (2) ) (4). Conversely, if (4) is satisfied, then, for any
', 2 D(X), we have

0 =
d
dt
!(Tt',Tt )

���
t=0 = !(X', ) + !(', X )

so (2) is also satisfied. Thus, we have shown (2), (4).
To prove the conservation of energy we will use (4) and the fact that XTt = TtX

on D(X). We therefore have, for every ' 2 D(X),

H(Tt') =
1
2
!(XTt',Tt') =

1
2
!(TtX',Tt') =

1
2
!(X',') = H(')
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as required. ut

Exercise 2.4.11. Apply Theorem 2.4.6 to show that the energy of the Klein-Gordon
field is conserved.





Appendix A
Tempered Distributions, Sobolev Spaces and
Fourier Transforms

Our primary references for this material are [RS1], Section V.3, [RS2], Chapter
IX, and [Yos], Chapter VI. There is also a more detailed synopsis with additional
motivation and many examples in Sections 5.2 and 8.4.1 of [Nab5]. Let N denote
the set of non-negative integers and NN = N⇥ N· · · ⇥N the set of N-tuples of non-
negative integers. An element ↵ = (↵1, . . . ,↵N) of NN will be called a multi-index.
For each such multi-index ↵ we write |↵| for the sum ↵1 + · · · + ↵N . If (q1, . . . , qN)
are the coordinates of q 2 RN with respect to some orthonormal basis and � is a
smooth real- or complex-valued function on RN , we will denote by @↵� the partial
derivative

(@↵�)(q) =
✓ @

@q1

◆↵1

· · ·
✓ @

@qN

◆↵N

�(q1, . . . , qN).

If ↵ = (0, . . . , 0), then @↵� = �. If ↵ = (1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . ,
(0, 0, 0, . . . , 0, 1), we will write @↵� as @1�, @2�, . . . , @N� so that @k� = @�/@qk for
k = 1, 2, . . . ,N. We will write q↵ for the monomial

q↵ = (q1)↵1 · · · (qN)↵N .

The Schwartz space S(RN) consists of all smooth, complex-valued functions � on
RN for which

sup
q2RN

��� q↵(@��)(q)
��� < 1

for all multi-indices ↵ and �. These are the functions which, together with all of
their partial derivatives, decay more rapidly than the reciprocal of any polynomial in
q1, . . . , qN as kqk ! 1; they are called Schwartz functions on RN . Certainly, S(RN)
contains the space C10 (RN) of smooth, complex-valued functions on RN with com-
pact support. The set of real-valued elements of S(RN) will be denoted S(RN ;R).
S(RN) is a vector space over C and S(RN ;R) is a vector space over R.

Recall that a semi-norm on a vector space V is a map ⇢ : V! [0,1) satisfying

69
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1. ⇢(v1 + v2)  ⇢(v1) + ⇢(v2) 8v1, v2 2 V
2. ⇢(↵v) = |↵| ⇢(v) 8↵ 2 R or C and 8v 2 V.

On S(RN) we can define a countable family of semi-norms k k↵,�

k�k↵,� = sup
q2RN

��� q↵(@��)(q)
���,

parametrized by pairs of multi-indices ↵, � 2 NN . Although each k k↵,� is only a
semi-norm, the family of all such has the property that k�k↵,� = 08↵, � 2 NN )
� = 0 so these combine to give a metric

⇢(�1, �2) =
X

↵,�2NN

1
2|↵|+|�|

k�1 � �2k↵,�
1 + k�1 � �2k↵,�

that is, moreover, complete, that is, Cauchy sequences converge (Theorem V.9 of
[RS1]). We supply S(RN) with the topology determined by this metric. A sequence
{�n}1n=1 in S(RN) converges to � in S(RN) if and only if { k���nk↵,� }1n=1 converges to
zero in R for all ↵, � 2 NN . This is clearly a very restrictive notion of convergence.
Nevertheless, using cuto↵ functions one can show that C10 (RN) is dense in S(RN).
S(RN ;R) is a closed subset of S(RN) and is therefore also complete.

Remark A.0.1. The topology we have just introduced provides the vector space
S(RN) with the structure of a Fréchet space. . We will not need any general results
on Fréchet spaces, but for those who would like to know more we recommend the
very thorough treatment in [Ham].

The complex-valued, linear functionals on S(RN) that are continuous with re-
spect to this Fréchet topology are called tempered distributions onRN and the linear
space of all such is denoted S0(RN). If T 2 S0(RN), then we will write the value of
T at � 2 S(RN) either as T [�] or as hT, �i. The elements of S(RN) are called test
functions. Notice that, because of their rapid decay at infinity, the elements of S(RN)
are all square integrable on RN so S(RN) is a linear subspace (but not a topological
subspace) of L2(RN).

S(RN) ✓ L2(RN)

Indeed, since C10 (RN) is dense in both S(RN) and L2(RN), the Schwartz functions
are dense in L2(RN). Next observe that L2(RN), being a Hilbert space, is isometri-
cally isomorphic to its dual via the Riesz Representation Theorem. Thus, every  in
L2(RN) gives rise to (and can be identified with) a linear functional T on L2(RN).
The restriction of T to S(RN) is a linear functional on S(RN) and is, in fact, an
element of S0(RN). We will often simply identify T with  so we can then identify
L2(RN) with a subset of S0(RN). Thus, we have

S(RN) ✓ L2(RN) ✓ S0(RN)
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which is an example of what is called a Gelfand triple or rigged Hilbert space.
With this in mind one often allows oneself such abuses of terminology as “T is
a distribution in L2(RN)”. Distributions of the form T for some  2 L2(RN) are
called regular distributions, while all of the others are called singular distributions.
An example of a singular distribution is the Dirac delta at any a 2 RN , denoted �a
and defined by

�a[�] = �(a) 8� 2 S(RN).

We should point out that the dual of a Fréchet space is generally not a Fréchet
space so S0(RN) does not come equipped with a ready-made topology. However, one
defines sequential convergence in S0(RN) pointwise on S(RN), that is, a sequence
{Tn} in S0(RN) converges to T in S0(RN) if and only if {Tn[�]} converges in C to
T [�] for every � 2 S(RN). Then every element of S0(RN) is the limit of a sequence
in L2(RN) (see Example 5.2.10 of [Nab5]).

For any multi-index ↵, the ↵th-distributional derivative @↵T of a distribution T is
defined by

@↵T [�] = (�1)|↵|T [@↵�]

for every � 2 S(RN). If T = T for some  2 L2(RN), then @↵T may or may not be
regular, that is, may or may not be in L2(RN). For ↵ = (1, 0, . . . , 0), (0, 1, . . . , 0), . . . ,
(0, 0, . . . , 1) the distributional derivatives @↵T are written @1T, @2T, . . . , @NT , respec-
tively. Similarly we will write @k1@k2 T for @↵T when ↵ has 1 in the k1 and k2 slots
and 0 elsewhere. The distributional gradient of T is the N-tuple

rT = (@1T, @2T, . . . , @NT ).

The particular use we would like to make of distributional derivatives at the
moment is the description of a certain class of Hilbert spaces. We should be
clear on the notational conventions we will employ in the following definitions.
If  2 L2(RN) we can regard  as a tempered distribution, that is, we can identify  
with T 2 S0(RN). We can then write the distributional derivatives of this distribu-
tion as @↵ . One says that the generally non-di↵erentiable function  2 L2(RN) has
derivatives in the sense of distributions. As we mentioned, these may or may not be
in L2(RN). The Sobolev spaces are defined by selecting those  2 L2(RN) for which
various distributional derivatives are in L2(RN).

Remark A.0.2. The Sobolev spaces are defined in Section IX.6 of [RS2] in terms of
Fourier transforms and we will get to this shortly. The equivalence of this definition
with ours is Proposition 1 of that section.

We define the Sobolev space H1(RN) to be the subset of L2(RN) consisting of
those elements for which the first order distributional derivatives are also in L2(RN),
that is,
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H1(RN) =
⇢
 2 L2(RN) : @k 2 L2(RN), k = 1, 2, . . . ,N

�
.

This is a linear subspace of L2(RN), but on H1(RN) we will define a new inner prod-
uct by summing the L2-inner products of the functions and all of their corresponding
first order distributional derivatives. More precisely, we define

h 1, 2iH1 = h 1, 2iL2 + h@1 1, @1 2iL2 + · · · + h@N 1, @N 2iL2 (A.1)

so that the corresponding norm is given by

k k2H1 = k k2L2 +

NX

k=1

k@k k2L2 . (A.2)

With this inner product, H1(RN) is complete and therefore a Hilbert space. Relative
to the norm topology determined by (A.2), the smooth functions on RN are dense.
Indeed, one can show that the set C10 (RN) of smooth functions with compact support
is dense in H1(RN) relative to the H1(RN)-norm topology.

Next define the Sobolev space H2(RN) to be the subset of L2(RN) consisting of
those elements for which the first and second order distributional derivatives are in
L2(RN), that is,

H2(RN) =
⇢
 2 L2(RN) : @k , @k1@k2 2 L2(RN), k, k1, k2 = 1, 2, . . . ,N

�
.

H2(RN) is also a Hilbert space with inner product

h 1, 2iH2 = h 1, 2iL2 +

NX

k=1

h@k 1, @k 2iL2 +

NX

k1=1

NX

k2=1

h@k1@k2 1, @k1@k2 2iL2 (A.3)

and corresponding norm

k k2H2 = k k2L2 +

NX

k=1

k@k k2L2 +

NX

k1=1

NX

k2=1

k@k1@k2 k2L2 . (A.4)

Remark A.0.3. We will need only H1(RN) and H2(RN), but, for integers K � 3, the
Sobolev spaces HK(RN) are defined in an entirely analogous manner. As sets,

· · · ✓ HK(RN) ✓ · · · ✓ H2(RN) ✓ H1(RN) ✓ L2(RN), (A.5)

although each of these has a di↵erent inner product. Much more refined informa-
tion about these inclusions and about the degree of regularity one can expect of the
elements of a given Sobolev space can be obtained from the so-called Sobolev In-
equalities. We mention also that, for Ck-valued functions, the Sobolev norms are
defined to be the sum of the Sobolev norms of the coordinate functions and one
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thereby obtains Sobolev spaces of Ck-valued functions. On occasion we will need
to restrict our attention to the real-valued elements of HK(RN) and we will denote
the set of all such by HK(RN ;R). This is a closed subset of HK(RN) so it is com-
plete with respect to the HK-norm and therefore HK(RN ;R) is a real Hilbert space
with respect to the inner product on HK(RN). We will have another way of looking
at the Sobolev spaces after reviewing the final topic of this section.

The Fourier transform of � 2 S(RN) is defined by

(F�)(p) = �̂(p) =
1

(2⇡)N/2

Z

RN
e�ip·q�(q) dNq, (A.6)

where p · q = PN
i=1 piqi if q = (q1, . . . , qN) 2 RN and p = (p1, . . . , pN) 2 RN .

Remark A.0.4. One should really think of the RN in which q lives and the RN in
which p lives as distinct. One can do this by identifying the p copy of RN with the
vector space dual (RN)⇤ of the q copy ofRN . Then (q1, . . . , qN) are components with
respect to some orthonormal basis for RN and (p1, . . . , pN) are components with
respect to the dual basis for (RN)⇤. It is common to refer to (RN)⇤ as Fourier space
or momentum space. The Schwartz space S((RN)⇤) is defined with respect to the dual
coordinates (p1, . . . , pN). However, since a Schwartz function �(q) = �(q1, . . . , qN)
of the orthonormal coordinates (q1, . . . , qN) uniquely gives rise to the same Schwartz
function �(p) = �(p1, . . . , pN) of the dual coordinates (p1, . . . , pN) and conversely
one generally need not bother to distinguish the two. Unless it is likely to lead to
some ambiguity we will follow this practice and write S(RN) for both.

Example A.0.1. The Fourier transform of �(q) is defined as a function �̂(p) of p,
but it can equally well be thought of as a function of q as follows.

(F�)(q) = �̂(q) =
1

(2⇡)N/2

Z

RN
e�iq·x�(x)dN x

Notice that one can think of p·q as the natural pairing on (RN)⇤⇥RN . In fact, there
is nothing sacred about the bilinear form hp, qi = p ·q. All of the essential properties
of the Fourier transform that we will describe remain true if it is replaced in the defi-
nition by any nondegenerate, symmetric bilinear form h , i and we will on occasion
(Section 2.2) make use of this flexibility by taking h , i to be the Minkowski inner
product on R1,3. We will discuss this a bit more at the end of this section.

Example A.0.2. Let A be an N ⇥ N, symmetric, positive definite matrix. Then the
Fourier transform of the Gaussian function

�(q) = e�
1
2 q·Aq

is given by



74 A Tempered Distributions, Sobolev Spaces and Fourier Transforms

�̂(p) =
1p

det A
e�

1
2 p·A�1 p.

The N = 1 case is Example 5.2.8 of [Nab5] and the general case is Exercise 8.4.3
of [Nab5].

The Fourier transform of a Schwartz function of q is a Schwartz function of p.
Indeed, the mapping F : S(RN) ! S(RN) that sends � to F� = �̂ is a (Fréchet)
continuous, linear, bijection with a continuous inverse F�1 : S(RN)! S(RN) given
by

(F�1 )(q) =  ̌(q) =
1

(2⇡)N/2

Z

RN
eiq·p (p) dN p. (A.7)

This is called the Fourier Inversion Theorem and is Theorem IX.1 of [RS2] and
Theorem 1, Section 1, Chapter VI, of [Yos]. Notice that

(F�1 )(q) = (F )(�q)

for any  2 S(RN).
Next we will record some of the most commonly used properties of the Fourier

transform and its inverse (see Section IX.1 of [RS1] or Section 4.3.1 of [Evans]).
For any �, �1, �2, 2 S(RN), any multi-index ↵, any r , 0 in R, and any a 2 RN ,

1. F(@↵�)(p) = (ip)↵(F�)(p)

2. F((�iq)↵�)(p) = @↵(F�)(p)

3. F�1(@↵ )(q) = (�iq)↵(F�1 )(q)

4. F�1((ip)↵ )(q) = @↵(F�1 )(q)

5. F(�(q � a)) = e�ia·p�̂(p)

6. F(eia·q�(q)) = �̂(p � a)

7. F(�(rq)) = 1
|r| �̂

✓
1
r p

◆

8. F(�1 ⇤ �2)(p) = (2⇡)N/2�̂1(p)�̂2(p), where the convolution product �1 ⇤ �2 is
defined by

(�1 ⇤ �2)(q) =
Z

RN
�1(q � y)�2(y) dNy.

Furthermore, F : S(RN)! S(RN) preserves the L2-norm, that is,
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Z

RN
|�(q)|2dNq =

Z

RN
|�̂(p)|2dN p

for every � 2 S(RN) (Corollary to Theorem IX.1 of [RS2]). Since S(RN) is dense in
L2(RN) and F carries S(RN) onto S(RN), this implies that F extends by continuity
to a unitary operator of L2(RN) onto itself, which we will continue to denote

F : L2(RN)! L2(RN).

This is called the Plancherel Theorem.
We will continue to refer to F : L2(RN) ! L2(RN) as the Fourier transform,

although it is often called the Fourier-Plancherel transform. F�1 : S(RN)! S(RN)
extends to the L2-adjoint F⇤ : L2(RN) ! L2(RN) of F, that is, to the inverse of
F : L2(RN)! L2(RN) since F is unitary. For � in L1(RN)\L2(RN), F� is computed
from the integral (A.6), but for an element of L2(RN) that is not Lebesgue integrable
on RN this integral will not converge. One can compute F� either as a limit in
L2(RN) of the Fourier transforms of a sequence of functions in L1(RN) \ L2(RN)
converging to � or as

(F�)(p) = �̂(p) = lim
M!1

1
(2⇡)N/2

Z

kqkM
e�ip·q�(q) dNq,

where the limit is in L2(RN); see Corollary 1, Section 2, Chapter VI, of [Yos] or
page 11 of [RS2]. Similarly,

(F�1 )(q) =  ̌(q) = lim
M!1

1
(2⇡)N/2

Z

kpkM
eiq·p�(p) dN p.

Remark A.0.5. The Fourier transform actually extends to all � 2 L1(RN) by (A.6),
but �̂ will, in general, only be in the space C0

1(RN) of continuous functions that
vanish at infinity (|�̂(p)|! 0 as kpk ! 1). This is the so-called Riemann-Lebesgue
Lemma (see Theorem IX.7 of [RS2]). Moreover, F maps L1(RN) into, but not onto
C0
1(RN). Identifying the range of the Fourier transform is a delicate issue and is

discussed in Sections IX.2 and IX.3 of [RS2].

The Fourier transform and its inverse extend beyond L2(RN) to the tempered
distributions. On S(RN) the Fourier transform is a linear bijection

F : S(RN)! S(RN).

We extend the map to

F : S0(RN)! S0(RN)

as follows. Let T be an element of S0(RN). Then FT = T̂ 2 S0(RN) is defined for
each � 2 S(RN) by
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hFT, �i = hT,F�i (A.8)

or

hT̂ , �i = hT, �̂i. (A.9)

As motivation for the definition we consider the case in which T = T is a regular
distribution with  2 L2(RN) and show that hT ̂, �i = hT , �̂i for every � 2 S(RN).

hT ̂, �i =
Z

RN
 ̂(q)�(q)dNq

=

Z

RN

✓ 1
(2⇡)N/2

Z

RN
e�iq·x (x)dN x

◆
�(q)dNq

=

Z

RN

✓ 1
(2⇡)N/2

Z

RN
e�ix·q�(q)dNq

◆
 (x)dN x (Fubini’s Theorem)

=

Z

RN
�̂(x) (x)dN x

= hT , �̂i.

Thus, for  2 L2(RN),

T̂ = T ̂.

It is common to suppress the distinction between  2 L2(RN) and T 2 S0(RN) in
which case one says that the distributional Fourier transform of  is the same as its
L2-Fourier transform.

Exercise A.0.1. Show that, for � 2 S(RN),

ˆ̂�(q) = �(�q).

Similarly, we define F�1 : S0(RN)! S0(RN) by

hF�1T, �i = hT,F�1�i (A.10)

or

hŤ , �i = hT, �̌i. (A.11)

Both F : S0(RN)! S0(RN) and F�1 : S0(RN)! S0(RN) are linear bijections.
If T is any tempered distribution and f is an integrable function on RN with

the property that it and all of its derivatives are bounded by polynomials, then, in
particular, f� is a Schwartz function whenever � is a Schwartz function and then

h f T, �i = hT, f�i
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defines a tempered distribution f T . This is certainly the case if f is a polynomial
onRN . With this definition one can show that properties (1)-(4) above are still valid
when � is taken to be a tempered distribution in L2(RN). For example,

F(@↵T ) = (ip)↵FT

(see Example 3, Section 2, Chapter VI, of [Yos]). Thus, even for distributions, the
Fourier transform takes derivatives to products, which is essentially its raison d’être.
For example, if  is in L2(RN) and if @k is also in L2(RN) for each k = 1, . . . ,N,
then, for each p = (p1, . . . , pk, . . . , pN),

F(@k )(p) = ipk  ̂(p).

But F is an isometry on L2(RN) so

k @k k2L2 =

Z

RN
(pk)2 | ̂(p)|2 dN p.

Consequently,

k k2L2 +

NX

k=1

k @k k2L2 =

Z

RN
(1 + kpk2) | ̂(p)|2 dN p

and we conclude that if  is in H1(RN), then (1 + kpk2)
1
2  ̂(p) is in L2(RN) and then

k kH1 =
��� (1 + kpk2)

1
2  ̂(p)

���
L2 .

For functions in L2(RN) it is also true that, conversely, if (1 + kpk2)
1
2  ̂(p) is in

L2(RN), then  is in H1(RN). One often sees H1(RN) defined as

H1(RN) =
�
 2 L2(RN) : (1 + kpk2)

1
2  ̂(p) 2 L2(RN)

 
.

There are analogous Fourier transform characterizations of all of the Sobolev spaces
(Proposition 1, Section IX.6, of [RS2]).

The final issue we would like to address in this section is a modest modification
of the usual definition of the Fourier transform that on occasion will be more ap-
propriate to our needs. In abstract harmonic analysis (see [Fol2] and [Rud1]) there
is a much more general notion of Fourier transform that we will briefly describe in
order to see how our generalization might arise. For this we let G denote an arbi-
trary locally compact, Hausdor↵, Abelian group (such as the additive group Rn).
The character group of G is denoted Ĝ and consists of all continuous homomor-
phisms ⇠ : G ! S 1 from G to the group S 1 of all complex numbers of modulus
one (see Remark 1.5.2 of [Nab6]). Ĝ is also a locally compact, Hausdor↵, Abelian
group. G admits a nontrivial regular Borel measure µG that is translation invariant
(µG(g + B) = µG(B) for every g 2 G and every Borel set B in G) and is unique up to
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a positive multiplicative constant; this is called a Haar measure on G. For G = Rn

the usual Lebesgue measure (or any positive multiple of it) is a Haar measure and
cRn � Rn (Remark 1.5.2 of [Nab6]). Now for any � 2 L1(G, µG) we define the
Fourier transform FG� : Ĝ ! C to be the complex-valued function on the character
group Ĝ defined by

[FG�](⇠) =
Z

G
⇠(g)�1�(g) dµG(g) =

Z

G
⇠(g)�(g) dµG(g) (A.12)

for every ⇠ 2 Ĝ. One can show that there exists a unique Haar measure µĜ on Ĝ
such that FG� is in L1(Ĝ, µĜ) whenever � is in L1(G, µG) and

�(g) =
Z

Ĝ
⇠(g)(FG�)(⇠) dµĜ(⇠)

for almost every g 2 G. The inverse Fourier transform is given by

[F�1
G �](g) =

Z

Ĝ
⇠(g)�(⇠) dµĜ(⇠)

for every � 2 L1(Ĝ, µĜ) and every g 2 G.
Now let’s specialize to the additive group G = R1,3. We will denote the points

in R1,3 by q = (q0, q1, q2, q3). In Remark 1.5.2 of [Nab6] it was shown that any
element of the character group R̂1,3 can be written in the form

⇠(q) = ⇠(q0, q1, q2, q3) = ei(p0q0+p1q1+p2q2+p3q3) = eip·q

for some unique p = (p0, p1, p2, p3) in R4 and that this gives a group isomorphism
between R̂1,3 and R4. With this identification of R̂1,3 and R4 and with

1
(2⇡)2 d4q =

1
(2⇡)2 dq0dq1dq2dq3

as Haar measure, (A.12) reduces to the usual Fourier transform

(F�)(p) = �̂(p) =
1

(2⇡)2

Z

R4
e�ip·q�(q) d4q.

However, it was shown in Section 2.6.3 of [Nab6] that R̂1,3 is naturally identified
with the vector space dual P1,3 of R1,3 so it would seem desirable to incorporate
the inner product structure of R1,3 rather than that of R4 into the definition of the
Fourier transform. This is easily done by noting that any ⇠ 2 R̂1,3 can equally well
be written as

⇠(q) = ⇠(q0, q1, q2, q3) = ei(p0q0�p1q1�p2q2�p3q3)

for some unique p = (p0, p1, p2, p3). With this (A.12) becomes what we will refer
to as the Minkowski-Fourier transform and which we will write as FM� or simply
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�̃ if the context is clear.

(FM�)(p) = �̃(p) =
1

(2⇡)2

Z

R1,3
e�ihp,qi�(q) d4q (A.13)

Here hp, qi = p0q0 � p1q1 � p2q2 � p3q3 = p↵q↵ and we write R1,3 rather than R4

simply to emphasize the appearance of the Minkowski inner product (the Haar mea-
sures are the same for both, of course). The inverse Minkowski-Fourier transform is
then given by

(F�1
M�)(q) =

1
(2⇡)2

Z

P1,3
eihq,pi�(p) d4 p.

These have all of the desirable properties of the usual Fourier transform and, in
particular, extend to L2(R1,3) and to the tempered distributions on R1,3.

Remark A.0.6. Note that the Minkowski inner product plays no role in the defini-
tions of L2(R1,3) or the tempered distributions on R1,3 so these are the same as the
corresponding objects on R4.

The advantages of the Minkowski-Fourier transform will emerge in Section 2.2
and, most particularly, in Exercises 2.2.2 and 2.2.3 where you will show that ele-
ments of S(R1,3) and S0(R1,3) are Lorentz invariant if and only if their Minkowski-
Fourier transforms are Lorentz invariant.





Appendix B
Semigroups of Operators

Let E denote a Banach space and, for each t � 0, let Tt : E! E be a bounded linear
operator on E. If {Tt}t�0 satisfies

1. T0 = idE,
2. Tt+s = TtTs, 8t, s � 0, and
3. for each x 2 E,

t ! Tt x : [0,1)! E

is continuous,

then {Tt}t�0 is called a strongly continuous semigroup of operators, or a C0-semigroup
of operators on E . {Tt}t�0 is contractive if each Tt has operator norm kTtk  1.

Example B.0.1. Let E be a Banach space and A : E ! E a bounded linear operator
on E. For each t � 0 define Tt : E! E by

Tt = etA =

1X

n=0

(tA)n

n!
.

Since kAk < 1 the series converges, for each fixed t, in the Banach space B(E) of
bounded operators on E to a bounded operator. Clearly, T0 = idE and, since tA and
sA commute, e(t+s)A = etAesA so Tt+s = TtTs. Because A is bounded we actually have
a much stronger continuity condition than the definition requires. Indeed, since

kTt � idEk =
�����
1X

n=1

(tA)n

n!

����� 
1X

n=1

tnkAkn
n!

= et kAk � 1

and et kAk � 1 ! 0 as t ! 0+, t ! etA is actually continuous as a map into B(E).
{Tt}t�0 is therefore, in particular, a strongly continuous semigroup of operators on
E, but it is generally not contractive.

81
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Exercise B.0.1. Show that, for any x 2 E,

lim
h!0

e(t+h)A(x) � etA(x)
h

= AetA(x).

Write this as

d
dt

Tt(x) = ATt(x)

and recall that

T0(x) = x.

Since every tangent space to a vector space can be identified with that same vector
space we can think of the operator A as defining a vector field on E whose value
at x 2 E is Ax 2 Tx(E). This suggests regarding Tt(x) as the integral curve of the
vector field on E represented by A that starts at the identity operator.

Example B.0.2. There is an important semigroup of operators associated with the
heat flow on R that was discussed in Example 5.2.13 and Example 8.4.8 of [Nab5].
We summarize the results. Consider the initial value problem

@ (t, x)
@t

� D
@2 (t, x)
@x2 = 0, (t, x) 2 (0,1) ⇥R

(B.1)
lim
t!0+

 (t, x) =  0(x), x 2 R

for the 1-dimensional heat (or di↵usion) equation, where D is a positive real number
(the di↵usion constant). Now define the 1-dimensional heat kernel HD : (0,1)⇥R⇥
R! R by

HD(t, x, y) =
1p

4⇡Dt
e�(x�y)2/4Dt.

Then a solution to the initial value problem (B.1) is given by

 (t, x) =
Z

R

HD(t, x, y) 0(y) dy

so HD(t, x, y) propagates the initial state  (0, x) =  0(x) to the state at time t. For
each t > 0 define a map Tt on L2(R) by

(Ttu)(x) =
Z

R

HD(t, x, y) u(y) dy
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for every u 2 L2(R) and take T0 to be the identity map on L2(R). Then {Tt}t�0 is
a strongly continuous, contractive semigroup of operators on L2(R) called the heat
semigroup, or heat flow.

Let {Tt}t�0 be a C0-semigroup of operators on a Banach space E. We introduce
an operator A, called the infinitesimal generator of {Tt}t�0, as follows. The domain
of A is

D(A) =
⇢
x 2 E : lim

t!0+

Tt x � x
t

exists inE
�
.

Then A : D(A)! E is given, at each x 2 D(A), by

Ax = lim
t!0+

Tt x � x
t
.

The following is Theorem 2, Section 7.4.1, of [Evans], Theorem 4, Section 34.1, of
[Lax], and the Proposition in Section X.8 of [RS2].

Theorem B.0.1. Let {Tt}t�0 be a C0-semigroup of operators on a Banach space E

and A : D(A)! E its infinitesimal generator. Then D(A) is a dense linear subspace
of E and A is a closed linear operator on D(A).

Remark B.0.1. Recall that A is closed if, whenever xn 2 D(A) for n = 1, 2, . . .,
xn ! x in E and Axn ! y in E, then x 2 D(A) and Ax = y.

The following is a special case of Theorem 8.4.21 of [Nab5]. In the statement of
the Theorem the derivative of t ! Tt x, for x 2 E, is defined to be the following limit
in E, provided the limit exists.

d
dt

Tt x = lim
h!0

Tt+hx � Tt x
h

Theorem B.0.2. Let {Tt}t�0 be a contractive C0-semigroup of operators on a Ba-
nach space E and A : D(A) ! E its infinitesimal generator. Let x be in D(A).
Then

1. Tt x is in D(A) for all t � 0,
2. ATt x = TtAx for all t � 0,
3. The map t ! Tt x is continuously di↵erentiable on t > 0, and
4. d

dt Tt x = ATt x for all t > 0.

Remark B.0.2. One can regard the infinitesimal generator A as a vector field defined
on D(A) and taking values in E. Then, motivated by (4), we call {Tt}t�0 the flow of
A. Also motivated by (4) we introduce the traditional notation for the semigroup
generated by A, that is,
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Tt = etA.

This notation is very suggestive and convenient. For example, TtTs = Tt+s becomes
etAesA = e(t+s)A and d

dt Tt x = ATt x becomes d
dt e

tAx = AetAx. However, one should
keep in mind that it is only under certain circumstances that etA is literally the expo-
nential of an operator in the sense of the functional calculus; this is true, for example,
if the infinitesimal generator A happens to be a bounded operator (Example B.0.1)
and we will mention one other instance of this in a moment.

Typically, one is not given a flow (semigroup of operators) and asked to find the
vector field that gives rise to it (its infinitesimal generator). Rather, one is given a
vector field and would like to know that a flow exists. The crucial question then is,
given an unbounded operator/vector field A how can one know that it is the infinites-
imal generator for some C0-semigroup of operators? This is the question addressed
by the Hille-Yosida Theorem, to which we now turn.

We already know that the infinitesimal generator A of any C0-semigroup {Tt}t�0
of operators on a Banach space E is a densely defined, closed operator on E. If
{Tt}t�0 is contractive, then A has two additional properties and, remarkably enough,
these two characterize infinitesimal generators of contractive semigroups among the
densely defined, closed operators. To describe these two properties we recall that
� 2 C is in the resolvent set ⇢(A) of the closed operator A if and only if � � A :
D(A) ! E is one-to-one and onto and that it follows from this that the resolvent
operator R�(A) = (� � A)�1 : E ! D(A) is bounded (Theorem, Section VIII.1,
[Yos]). One can then show that, if A is the infinitesimal generator of a contractive
semigroup of operators on a Banach space, then

1. (0,1) ✓ ⇢(A), and
2. kR�(A)k = k(� � A)�1k  1

� 8� > 0.

For the proof of this one can consult Theorem 3(ii), Section 7.4.1, of [Evans], Sec-
tion X.8 of [RS2], Section 34.1 of [Lax], or Section IX.3 of [Yos]). That these two
properties alone characterize the infinitesimal generators of contractive semigroups
of operators on a Banach space among the densely defined, closed operators is the
content of the Hille-Yosida Theorem.

Theorem B.0.3. (Hille-Yosida Theorem) Let E be a Banach space and A : D(A)!
E a densely defined, closed operator on E. Then A is the infinitesimal generator of
a contractive semigroup of operators on E if and only if

1. (0,1) ✓ ⇢(A), and
2. kR�(A)k = k(� � A)�1k  1

� 8� > 0.

Remark B.0.3. This is Theorem X.47a of [RS2] and Theorem 7, Section 34.2, of
[Lax]. An extension of the result to arbitrary C0-semigroups is generally called the
Hille-Yosida-Phillips Theorem and is Theorem X.47b of [RS2]. A more general
result for locally convex, sequentially complete topological vector spaces appears
as the Theorem in Section IX.7 of [Yos].
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Here is a consequence of Hille-Yosida that we will need; it is Theorem 8.4.23 of
[Nab5].

Theorem B.0.4. Let H be a Hilbert space and T : D(A) ! H an operator on H

that is self-adjoint and positive
� hT , i � 0 8 2 D(T )

�
. Then �T generates a

contractive C0-semigroup of operators on H.

Remark B.0.4. We mention that in this case the semigroup operator e�tT really is
the exponential function of the operator �tT in the sense of the functional calculus.
That is, if

T =
Z

[0,1)
� dE�

is the spectral decomposition of T , then

e�tT =

Z

[0,1)
e�t� dE�.

Example B.0.3. Let V : R ! R be a non-negative, measurable function. Then the
corresponding multiplication operator on L2(R), which we will also denote V , is
self-adjoint and positive on D(V) = {� 2 L2(R) : V� 2 L2(R)}. Consequently, �V
generates a contractive C0-semigroup e�tV on L2(R).

Example B.0.4. Let � denote the Laplace operator on L2(R). Its domain is the set
of all  in L2(R) for which the distributional second derivative � is also in L2(R)
and this is precisely the Sobolev space H2(R) (see Appendix A). On this domain
� is self-adjoint and satisfies h� , i  0 8 2 D(�). Consequently, the operator
�� : D(�) ! L2(R) is self-adjoint and positive so we conclude from Theorem
B.0.4 that � generates a contractive semigroup

et�

of operators on L2(R). In Example 8.4.8 of [Nab5] it is shown that this semigroup
is precisely the heat semigroup on L2(R) with di↵usion constant D = 1 (Example
B.0.2).





References

AM. Abraham, R. and J.E. Marsden, Foundations of Mechanics, Second Edition, Addison-
Wesley, Redwood City, CA, 1987 .

AMR. Abraham, R., J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications,
Third Edition, Springer, New York, NY, 2001.

AS. Aharonov, Y. and L. Susskind, Observability of the Sign Change of Spinors Under 2⇡
Rotations, Phys. Rev., 158, 1967, 1237-1238.

AMS. Aitchison, I.J.R., D.A. MacManus, and T.M. Snyder, Understanding Heisenberg’s “Mag-
ical” Paper of July 1925: A New Look at the Computational Details, Am. J. Phys. 72
(11), November 2004, 1370-1379.

Alb. Albert, D., Quantum Mechanics and Experience, Harvard University Press, Cambridge,
MA, 1992.

AHM. Albeverio, S.A., R.J. Hoegh, and S. Mazzucchi, Mathematical Theory of Feynman Path
Integrals: An Introduction, Second Edition, Springer, New York, NY, 2008.

Alex. Alexandrov, A.D., On Lorentz Transformations, Uspehi Mat. Nauk, 5, 3(37), 1950, 187
(in Russian)

AAR. Andrews, G.E., R. Askey, and R. Roy, Special Functions, Cambridge University Press,
Cambridge, England, 2000.

Apos. Apostol, T.M., Mathematical Analysis, Second Edition, Addison-Wesley Publishing Co.,
Reading, MA, 1974.

Arn1. Arnol’d, V.I., Ordinary Di↵erential Equations, MIT Press, Cambridge, MA, 1973.
Arn2. Arnol’d, V.I., Mathematical Methods of Classical Mechanics, Second Edition. Springer,

New York, NY, 1989.
ADR. Aspect, A., J. Dalibard, and G. Roger, Experimental Test of Bell’s Inequalities Using

Time-Varying Analyzers, Physical Review Letters, Vol. 49, No. 25, 1982, 1804-1807.
Bal. Ballentine, L.E., The Statistical Interpretation of Quantum Mechanics, Rev. Mod. Phys.,

Vol 42, No 4, 1970, 358-381.
Barg. Bargmann, V., Note on Wigner’s Theorem on Symmetry Operations, J. Math. Phys., Vol

5, No 7, 1964, 862-868.
BW. Bargmann, V. and E.P. Wigner, Group Theoretical Discussion of Relativistic Wave Equa-

tions, Proc. Nat. Acad. Sci., Vol 34, 1948, 211-223.
BB-FF. Barone, F.A., H.Boschi-Filho, and C. Farina, Three Methods for Calculating the Feynman

Propagator, Am. J. Phys., 71, 5, 2003, 483-491.
Bar. Barut, A.O. and R. Raczka, Theory of Group Representations and Applications, Polish

Scientific Publishers, Warszawa, Poland, 1977.
Bell. Bell, J.S., On the Einstein, Podolsky, Rosen Paradox, Physics 1, 3, 1964, 195-200.
BS. Berezin, F.A. and M.A. Shubin, The Schrödinger Equation, Kluwer Academic Publish-

ers, Dordrecht, The Netherlands, 1991.

87



88 References

BGV. Berline, N., E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer,
New York, NY, 2004.

Bern. Berndt, R. An Introduction to Symplectic Geometry, American Mathematical Society,
Providence, RI, 2001.

BP. Bernstein, H.J. and A.V. Phillips, Fiber Bundles and Quantum Theory, Scientific Amer-
ican, 245, 1981, 94-109.

BG. Bishop, R.L. and S. Goldberg, Tensor Analysis on Manifolds, Dover Publications, Inc.,
Mineola, NY, 1980.

BD1. Bjorken, J.D. and S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill Book
Company, New York, 1964.

BD2. Bjorken, J.D. and S.D. Drell, Relativistic Quantum Fields, McGraw-Hill Book Company,
New York, 1965.

BEH. Blank, J., Exner, P., and M. Havlicek, Hilbert Space Operators in Quantum Physics,
Second Edition, Springer, New York, NY, 2010.

Blee. Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley Publishing
Company, Reading, MA, 1981.

BLT. Bogolubov, N.N., A.A. Logunov, and I.T. Todorov, Introduction to Axiomatic Quantum
Field Theory, W.A. Benjamin, Inc., Reading, MA, 1975.

Bohm. Bohm, D., Quantum Theory, Dover Publications, Inc., Mineola, NY, 1989.
BR. Bohr, N. and L. Rosenfeld, Zur Frage der Meßbarkeit der Electromagnetischen
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deAI. de Azcárraga, J. and J. Izquierdo, Lie Groups, Lie Algebras, Cohomology and Some
Applications in Physics, Cambridge University Press, Cambridge, England, 1995.

deMJS. de Muynck, W.M., P.A.E.M. Janssen and A. Santman, Simultaneous Measurement and
Joint Probability Distributions in Quantum Mechanics, Foundations of Physics, Vol. 9,
Nos. 1/2, 1979, 71-122.

Dirac1. Dirac, P.A.M., The Fundamental Equations of Quantum Mechanics, Proc. Roy. Soc.
London, Series A, Vol. 109, No. 752, 1925, 642-653.

Dirac2. Dirac, P.A.M., The Lagrangian in Quantum Mechanics, Physikalische Zeitschrift der
Sowjetunion, Band 3, Heft 1, 1933, 64-72.

Ehren. Ehrenfest, P., Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik
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Ein1. Einstein, A., Über einen die Erzeugung und Verwandlung des Lichtes betre↵enden
heuristischen Gesichtspunkt, Annalen der Physik 17(6), 1905, 132-148. English transla-
tion in [terH]

Ein2. Einstein, A., Zur Elektrodynamik bewegter Körper, Annalen der Physik, 17(10), 1905,
891-921. English translation in [Ein3]

Ein3. Einstein, A., et al., The Principle of Relativity, Dover Publications, Inc., Mineola, NY,
1952.

Ein4. Einstein, A., Investigations on the Theory of the Brownian Movement, Edited with Notes
by R. Fürth, Translated by A.D. Cowper, Dover Publications, Inc., Mineola, NY, 1956.

EPR. Einstein, A., B. Podolsky,and N. Rosen, Can the Quantum Mechanical Description of
Reality be Considered Complete? Physical Review, 41, 1935, 777-780.

Eis. Eisberg, R.M., Fundamentals of Modern Physics, John Wiley and Sons, New York, NY,
1967.

Emch. Emch, G.G., Mathematical and Conceptual Foundations of 20th-Century Physics, North
Holland, Amsterdam, The Netherlands, 1984.

Evans. Evans, L.C., Partial Di↵erential Equations, Second Edition, American Mathematical
Society, Providence, RI, 2010.

Fad. Fadell, E., Homotopy Groups of Configuration Spaces and the String Problem of Dirac,
Duke Math. J., 29, 1962, 231-242.

FP1. Fedak, W.A. and J.J. Prentis, Quantum Jumps and Classical Harmonics, Am. J. Phys. 70
(3), 2002, 332-344.

FP2. Fedak, W.A. and J.J. Prentis, The 1925 Born and Jordan Paper “On Quantum Mechanics”,
Am. J. Phys. 77 (2), 2009, 128-139.

Fels. Felsager, B., Geometry, Particles, and Fields, Springer, New York, NY, 1998.
Ferm. Fermi, E., Thermodynamics, Dover Publications, Mineola, NY,1956.
FLS. Feynman, R.P., R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol

I-III, Addison-Wesley, Reading, MA, 1964.
Feyn. Feynman, R.P., Space-Time Approach to Non-Relativistic Quantum Mechanics, Rev. of

Mod. Phys., 20, 1948, 367-403.
Flamm. Flamm, D., Ludwig Boltzmann-A Pioneer of Modern Physics, arXiv:physics/9710007.
Fol1. Folland, G.B., Harmonic Analysis in Phase Space, Princeton University Press, Princeton,

NJ, 1989.



90 References

Fol2. Folland, G.B., A Course in Abstract Harmonic Analysis, CRC Press, Boco Ratan, FL,
1995.

Fol3. Folland, G. B., Quantum Field Theory: A Tourist Guide for Mathematicians, American
Mathematical Society, Providence, RI, 2008.

FS. Folland, G.B. and A. Sitaram, The Uncertainty Principle: A Mathematical Survey, Jour-
nal of Fourier Analysis and Applications, Vol. 3, No. 3, 1997, 207-238.

FU. Freed, D.S. and K.K. Uhlenbeck, Editors, Geometry and Quantum Field Theory, Amer-
ican Mathematical Society, Providence, RI, 1991.

Fried. Friedman, A. Foundations of Modern Analysis, Dover Publications, Inc., Mineola, NY,
1982.

FrKo. Friesecke, G. and M. Koppen, On the Ehrenfest Theorem of Quantum Mechanics, J.
Math. Phys., Vol. 50, Issue 8, 2009. Also see http://arxiv.org/pdf/0907.1877.pdf.

FrSc. Friesecke, G. and B. Schmidt, A Sharp Version of Ehrenfest’s Theorem fo Gen-
eral Self-Adjoint Operators, Proc. R. Soc. A, 466, 2010, 2137-2143. Also see
http://arxiv.org/pdf/1003.3372.pdf.

Fuj1. Fujiwara, D., A Construction of the Fundamental Solution for the Schrödinger Equations,
Proc. Japan Acad., 55, Ser. A, 1979, 10-14.

Fuj2. Fujiwara, D., On the Nature of Convergence of Some Feynman Path Integrals I, Proc.
Japan Acad., 55, Ser. A, 1979, 195-200.

Fuj3. Fujiwara, D., On the Nature of Convergence of Some Feynman Path Integrals II, Proc.
Japan Acad., 55, Ser. A, 1979, 273-277.

Gaal. Gaal, S.A., Linear Analysis and Representation Theory, Springer, New York, NY, 1973.
Går. Gårding, L., Note on Continuous Representations of Lie Groups, Proc. Nat. Acad. Sci.,

Vol. 33, 1947, 331-332.
Gel. Gel’fand, I.M., Representations of the Rotation and Lorentz Groups and their Applica-

tions, Martino Publishing, Mansfield Centre, CT, 2012.
GN. Gel’fand, I.M. and M.A. Naimark, On the Embedding of Normed Rings into the Ring of

Operators in Hilbert Space, Mat. Sbornik 12, 1943, 197-213.
GS. Gel’fand, I.M. and G.E. Shilov, Generalized Functions, Volume I, Academic Press, Inc.,

New York, NY, 1964.
GY. Gel’fand, I.M. and A.M. Yaglom, Integration in Functional Spaces and its Applications

in Quantum Physics, J. Math. Phys., Vol. 1, No. 1, 1960, 48-69.
GJ. Glimm, J. and A. Ja↵e, Quantum Physics: A Functional Integral Point of View, Second

Edition, Springer, New York, NY, 1987.
Gold. Goldstein, H., C. Poole and J. Safko, Classical Mechanics, Third Edition. Addison-

Wesley, Reading, MA, 2001.
Good. Goodman, R.W., Analytic and Entire Vectors for Representations of Lie Groups, Trans.

Amer. Math. Soc., 143, 55-76, 1969.
Got. Gotay, M.J., On the Groenewold-Van Hove Problem for R2n, J. Math. Phys., Vol. 40,

No. 4, 2107-2116, 1999.
GGT. Gotay, M.J., H.B. Grundling, and G.M. Tuynman, Obstruction Results in Quantization

Theory, J. Nonlinear Sci., Vol. 6, 469-498, 1996.
GR. Gradshteyn, I.S. and I.M. Ryzhik, Table of Integrals, Series, and Products, Seventh

Edition, Academic Press, Burlington, MA, 2007.
GG. Gravel, P. and C. Gauthier, Classical Applications of the Klein-Gordon Equation, Am. J.

Phys. 79(5), 447-453, May, 2011.
Gre. Greenberg, M., Lectures on Algebraic Topology, W.A. Benjamin, New York, NY, 1967.
Gri. Greiner, W., Relativistic Quantum Mechanics: Wave Equations, 3rd Edition Springer-

Verlag, Berlin, 2000.
Groe. Groenewold, H.J., On the Principles of Elementary Quantum Mechanics, Physica (Am-

sterdam), 12, 405-460, 1946.
GS1. Guillemin, V. and S. Sternberg, Symplectic Techniques in Physics, Cambridge University

Press, Cambridge, England, 1984.
GS2. Guillemin, V. and S. Sternberg, Supersymmetry and Equivariant de Rham Theory,

Springer, New York, NY, 1999.



References 91

Gurtin. Gurtin, M.E,, An Introduction to Continuum Mechanics, Academic Press, New York,
NY, 1981.

HK. Hafele, J.C. and R.E. Keating, Around-the-World Atomic Clocks: Observed Relativistic
Time Gains, Science 177 (4044), 168-170.

Hall. Hall, B.C., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,
Springer, New York, NY, 2003.

Hal1. Halmos, P.R., Measure Theory, Springer, New York, NY, 1974.
Hal2. Halmos, P.R., Foundations of Probability Theory, Amer. Math. Monthly, Vol 51, 1954,

493-510.
Hal3. Halmos, P.R., What Does the Spectral Theorem Say?, Amer. Math. Monthly, Vol 70,

1963, 241-247.
Ham. Hamilton, R.S., The Inverse Function Theorem of Nash and Moser, Bull. Amer. Math.

Soc., Vol 7, No 1, July, 1982.
Hardy. Hardy, G.H., Divergent Series, Clarendon Press, Oxford, England, 1949.
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Vol 44, 1927, 326-352.
Kiri. Kirillov, A.A., Lectures on the Orbit Method, American Mathematical Society, Provi-

dence, RI, 2004.
Knapp. Knapp, A.WW., Lie Groups: Beyond an Introduction, Second Edition, Birkhauser,

Boston, MA, 2002.
KN1. Kobayashi, S. and K. Nomizu, Foundations of Di↵erential Geometry, Volume 1, Wiley-

Interscience, New York, NY, 1963.
KN2. Kobayashi, S. and K. Nomizu, Foundations of Di↵erential Geometry, Volume 2, Wiley-

Interscience, New York, NY, 1969.
Koop. Koopman, B.O., Hamiltonian Systems and Transformations in Hilbert Spaces, Proc. Nat.

Acad. Sci., Vol 17, 1931, 315-318.



92 References

Lands. Landsman, N.P., Between Classical and Quantum, http://arxiv.org/abs/quant-ph/0506082
LaLi. Landau, L.D. and E.M. Lifshitz, The Classical Theory of Fields, Third Revised English

Edition, Pergamon Press, Oxford, England, 1971.
Lang1. Lang, S., Linear Algebra, Second Edition, Addison-Wesley Publishing Company, Read-

ing, MA, 1971.
Lang2. Lang,S., S L2(R), Springer, New York, NY, 1985.
Lang3. Lang, S., Di↵erential and Riemannian Manifolds, Springer, New York, NY, 1995.
Lang4. Lang, S., Introduction to Di↵erentiable Manifolds, Second Edition. Springer, New York,

NY, 2002.
Langm. Langmann, E., Quantum Theory of Fermion Systems: Topics Between Physics and Math-

ematics, in Proceedings of the Summer School on Geometric Methods for Quantum Field
Theory, edited by H.O.Campo, A.Reyes, and S. Paycha, World Scientific Publishing Co.,
Singapore, 2001.

Lax. Lax, P.D., Functional Analysis, Wiley-Interscience, New York, NY, 2002.
Lee. Lee, J.M., Introduction to Smooth Manifolds, Springer, New York, NY, 2003.
LGM. Liang, J-Q., B-H. Guo, and G. Morandi, Extended Feynman Formula for Harmonic

Oscillator and its Applications, Science in China (Series A), Vol. 34, No. 11, 1346-1353,
1991.

LL. Lieb, E.H. and M. Loss, Analysis, American Mathematical Society, Providence, RI,
1997.
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Schrö1. Schrödinger, E., Quantisierung als Eigenwertproblem, Annalen der Physik, 4, Volume

79, 1926, 273-376. English translation available in [Schrö2].
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