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Preface

It is our ultimate objective to have in hand a mathematically rigorous model of a
quantum field theory representing the quantization of the classical Klein-Gordon
field. Mathematical rigor and QFT are, however, rather strange bedfellows. Indeed,
the very notion that one could (or even should) introduce rigorous methods into
QM and QFT came rather late upon the scene. Even a physicist of the stature of
Wolfgang Pauli initially disparaged Max Born’s e↵orts to reformulate Heisenberg’s
ideas in terms of matrices as “futile mathematics” (see page 37 of [VDW]). Rigor is
something superimposed upon quantum theory after the fact. In order to understand
where the rigorous model comes from and what it is intended to describe one must
first have at least a brief look at how these matters are viewed by the physicists. This
is what we will try to do here.

The earliest attempt to quantize a classical field appeared in 1926 in the famous
“Dreimännerarbeit” [BHJ] of Born, Heisenberg and Jordan. Their real interest was
in the electromagnetic field, but as a first step in this direction they chose to con-
sider the much simpler case of a classical vibrating string. We will follow their
lead in Section 1.1, emphasizing the heuristic and intuitive aspects of the process
in physics rather than the mathematical niceties and we will consider only the non-
relativistic case. Although the underlying ideas appear on the surface to be quite
similar, the actual gulf separating the vibrating string from the electromagnetic field
is enormous, even at the heuristic and intuitive level, and we will not attempt to
bridge the gap. Instead we will, in Section 1.2, take a look, again heuristic and intu-
itive, at the quantization of the classical Klein-Gordon field which, like the vibrating
string and unlike the electromagnetic field, is a scalar field of positive mass.

We will need to assume a familiarity with the canonical quantization procedure
proposed by Dirac so we have included appendices in which this is summarized
and the two most elementary examples are described; more detailed discussions
are available in Sections 7.2, 7.3 and 7.4 of [Nab5]. The example of the harmonic
oscillator will be particularly important to us here. In the next installment we will
begin constructing some of the mathematical machinery motivated by the vibrating
string and the Klein-Gordon field and required in order to proceed to the rigorous
treatment of Klein-Gordon based on the Wightman Axioms.
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viii Preface

Before getting started, however, we should point out that the Heisenberg picture
of quantum mechanics is generally considered to be more natural in quantum field
theory than the Schrödinger picture. This is discussed in Section A.4 of [Nab5].
From this point of view the state of a quantum system is represented by a fixed
element  in the Hilbert space H of the system and the observables are represented
by self-adjoint operators A(t) that evolve in time. If H is the Hamiltonian of the
system (which is atypical among the observables in the Heisenberg picture in that
it is independent of t), then the evolution of an observable from some initial self-
adjoint operator A = A(0) is governed by

A(t) = eitH/~Ae�itH/~.

One can prove that, with su�cient regularity assumptions, the evolution A(t) of the
observable satisfies the Heisenberg equation

dA(t)
dt

 = � i
~

[A(t),H] 

(for a precise statement see Remark A.4.4 and Theorem A.4.3 of [Nab6]).

Caveat Lector: What follows in the next three sections will, on occasion, look like
it must be mathematics, but we assure you that there is precious little of that. Here we
are attempting, for the purposes of motivation, to follow the path of the physicists,
boldly going where no mathematician could comfortably go along a path strewn
with purely formal definitions and calculations. As we have said before, mathe-
matical rigor comes (if at all) after the fact and we will return to the problem of
constructing the appropriate mathematical foundations later. For the time being we
will abide by the physicist’s mantra

“Shut up and calculate!”
-N. D. Mermin

(see http://www.gnm.cl/emenendez/uploads/Cursos/callate-y-calcula.pdf). The Exer-
cises in these three sections should be approached in the same spirit.
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Chapter 1
Quantized Fields: Motivation

1.1 The Non-Relativistic Vibrating String

In the classical Vibrating String Problem one is asked to describe the small, trans-
verse vibrations u(x, t) of an elastic string, tightly stretched along the x-axis between
x = 0 and x = l assuming that no external forces act on it. A bit of physics, which
one sees in any elementary course on partial di↵erential equations (see, for exam-
ple, Section 25 of [BC] or Chapter 8 of [Sp3]), shows that u(x, t) satisfies the 1-
dimensional wave equation and vanishes at the endpoints of the string for all t, that
is,

⇢
@2u
@t2 = ⌧

@2u
@x2 , (x, t) 2 (0, l) ⇥ (0,1)

(1.1)
u(0, t) = u(l, t) = 0, t 2 [0,1)

where ⇢ is the mass density and ⌧ is the tension of the string, both of which will
be assumed constant; in particular, the mass of the string is m = l⇢. Since we
do not need them at the moment we will not be explicit about the initial dis-
placement u(x, 0) and initial velocity @u

@t (x, 0) that one must specify in order to de-
scribe a well-posed problem. Standard operating procedure is to separate variables
u(x, t) = X(x)T (t) and obtain one Sturm-Liouville problem

X00(x) � �X(x) = 0
X(0) = X(l) = 0

for X(x) and an ordinary di↵erential equation

T̈ (t) � �⌧
⇢

T (t) = 0

1



2 1 Quantized Fields: Motivation

for T (t). The eigenvalues for the Sturm-Liouville problem are �k = � k2⇡2

l2 , k =
1, 2, . . ., and the corresponding orthonormal eigenfunctions are

Xk(x) =

r
2
l

sin
k⇡x

l
, k = 1, 2, . . . .

Here “orthonormal” means in the L2-sense, that is,
Z l

0
Xj(x)Xk(x)dx = � jk. (1.2)

With �k = � k2⇡2

l2 the equation for T (t) becomes

T̈ (t) + !2
k T (t) = 0, k = 1, 2, . . . ,

where

!k =

r
⌧

⇢

k⇡
l
.

These equations for T are also easy to solve, of course, but we prefer to regard
them simply as instances of the harmonic oscillator equation and to denote by Tk(t)
an arbitrary nontrivial solution to T̈ (t) + !2

k T (t) = 0. For each k we then obtain a
nontrivial solution

uk(x, t) = Tk(t)Xk(x) = Tk(t)

r
2
l

sin
k⇡x

l

to (1.1). Notice that, for each x0 2 (0, l) with sin k⇡x0
l , 0, the point on the string at

location x0 executes a simple harmonic motion with frequency !k and some ampli-
tude determined by Tk(t). The solutions uk(x, t) therefore represent standing waves
and we shall refer to them as normal modes of vibration for the string. Since the fre-
quency !k and the mass are constant for each normal mode it is sometimes useful to
think intuitively of the normal modes themselves as harmonic oscillators, although
strictly speaking it is the amplitude that satisfies the harmonic oscillator equation.

Superimposing these normal modes (and turning a blind eye to all of the pesky
convergence issues it raises) one obtains a “general” motion of the string

u(x, t) =
1X

k=1

Tk(t)

r
2
l

sin
k⇡x

l
. (1.3)

Classically, the total energy E of the vibration u(x, t) is taken to be

E =
1
2

Z l

0


⇢

✓@u
@t

◆2
+ ⌧

✓@u
@x

◆2�
dx, (1.4)
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where 1
2⇢(@u/@t)2 is the kinetic energy density and 1

2⌧(@u/@x)2 is the potential en-
ergy density.

Remark 1.1.1. This is not supposed to be obvious. The first term looks about right
for a kinetic energy term ( 1

2 mv2), but the second requires more detailed physical con-
siderations. One can find derivations of the string energy as well as some cautionary
remarks in [Burko].

Exercise 1.1.1. The Lagrangian for the vibrating string is the di↵erence in the ki-
netic and potential energies, that is,

L =
1
2

Z l

0


⇢

✓@u
@t

◆2
� ⌧

✓@u
@x

◆2�
dx.

Show that the Euler-Lagrange equation ((1.9) of [Nab7]) is precisely the wave equa-
tion

⇢
@2u
@t2 = ⌧

@2u
@x2 .

Substituting (1.3) into (1.4) and using the orthonormality conditions (1.2) this
expression for the energy reduces to

E =
1X

k=1

⇢

2
⇥
Ṫ 2

k + !
2
kT 2

k
⇤
.

Letting

qk =
p
⇢Tk, and pk =

p
⇢ Ṫk, k = 1, 2, . . .

this becomes

E =
1X

k=1

1
2

⇥
p2

k + !
2
k(qk)2⇤.

Each term 1
2 [p2

k + !
2
k(qk)2] in the sum is the canonical form of the classical Hamil-

tonian for the harmonic oscillator of mass 1 and frequency !k. The quantization of
such a harmonic oscillator (and any finite sum of independent harmonic oscillators)
was described in Appendix B and we will now proceed, heuristically, toward the
quantization of the vibrating string by regarding it as a sum of these infinitely many
independent harmonic oscillators.

For the canonical quantization of this system we will want to regard qk, pk
k = 1, 2, . . ., as canonical variables and replace them with the self-adjoint opera-
tors Qk, Pk, k = 1, 2, . . ., of the corresponding quantum harmonic oscillator (see
Appendix B). These satisfy the canonical commutation relations
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[Qj,Qk] = [Pj, Pk] = 0, [Qj, Pk] = i~� j
k, j, k = 1, 2, . . .

where the identity operator is understood on the right-hand side of the last relation.
Setting aside any qualms we might have about infinite sums of unbounded operators,
the energy E of the classical vibrating string becomes the Hamiltonian

H =
1X

k=1

1
2

⇥
P2

k + !
2
k(Qk)2⇤

of the quantized string.

Remark 1.1.2. What, you might well ask, is the Hilbert space on which this pro-
posed Hamiltonian operator is supposed to act? For a system of finitely many har-
monic oscillators we have given a perfectly explicit answer in Appendix B, but the
situation becomes rather murky for infinitely many oscillators. We will have a bit
more to say about this at the end of this section, but for the time being, let’s just
compute and see what turns up.

For each k = 1, 2, . . ., the spectrum of 1
2
⇥
P2

k + !
2
k(Qk)2⇤ consists entirely of the

simple eigenvalues

E(k)
n = (n +

1
2

)~!k, n = 0, 1, 2, . . .

with corresponding normalized eigenfunctions

 (k)
n (qk) =

1p
2nn!

✓!k

~⇡

◆1/4
e�!k(qk)2/2~Hn

✓ r
!k

~
qk

◆
, n = 0, 1, 2, . . .

where we have written qk for the spatial coordinate of the kth oscillator and Hn is the
nth Hermite polynomial. Thus,

1
2

⇥
P2

k + !
2
k(Qk)2⇤ (k)

n =

(n +

1
2

)~!k

�
 (k)

n , n = 0, 1, 2, . . .

 (k)
n therefore corresponds to a state of the kth oscillator in which it has energy E(k)

n =
(n+ 1

2 )~!k. Notice that the state of least energy (the ground state) of the kth oscillator
is  (k)

0 and the energy of this state is 1
2~!k, which is not zero. Soon we will see that

this causes some problems for our proposed Hamiltonian H. Every other state  (k)
n

corresponds to an energy level of the kth oscillator that di↵ers from its ground state
energy by an integer number of basic energy quanta ~!k.

Now we proceed to formally mimic the procedure for finitely many oscillators in
Appendix B. We define, for each k = 1, 2, . . ., lowering and raising operators bk and
b†k by
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bk =
1p

2!k~
(!kQk + iPk)

and

b†k =
1p

2!k~
(!kQk � iPk),

respectively. Solving for Qk and Pk gives

Qk =

s
~

2!k
(b†k + bk)

Pk = i

r
!k~

2
(b†k � bk).

The operators bk and b†k are adjoints of each other, satisfy the commutation relations

[b j, bk] = [b†j , b
†
k] = 0, [b j, b†k] = � jk, j, k = 1, 2, . . .

and act on the eigenfunctions  (k)
n in the following way. bk annihilates the ground

state  (k)
0 , that is, bk 

(k)
0 = 0 and otherwise

bk 
(k)
n =

p
n (k)

n�1, n = 1, 2, . . . and b†k 
(k)
n =

p
n + 1 (k)

n+1, n = 0, 1, 2, . . .

so bk (respectively, b†k) decreases (respectively, increases) the energy level of the
eigenstates by one energy quantum ~!k . Furthermore, all of the eigenstates  (k)

n , n =
1, 2, . . . , can be obtained by repeated application of the raising operator b†k to the
ground state  (k)

0 . Specifically,

 (k)
n =

1p
n!

(b†k)n (k)
0 .

The kth-number operator Nk is defined by

Nk = b†kbk, , k = 1, 2, . . .

and satisfies

Nk 
(k)
n = n (k)

n , n = 0, 1, 2, . . .

Thus, Nk has eigenvalues n = 0, 1, 2, . . . and these count the number of energy
quanta ~!k beyond the ground state energy ( 1

2~!k) in the kth oscillator when it is
in state  (k)

n . In terms of the number operators our vibrating string Hamiltonian can
now be written as
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H =
1X

k=1

~!k
⇥

Nk +
1
2

⇤
. (1.5)

Remark 1.1.3. We have conscientiously avoided specifying the Hilbert space on
which this putative Hamiltonian operator is supposed to be defined. After a few
remarks at the end of this section we will address this issue carefully in the next
chapter. However, we would like to anticipate the result in order to make an impor-
tant observation. We will find that this Hilbert space for the string contains a ground
state, or vacuum state that is annihilated by every bk and therefore by every num-
ber operator Nk. This is thought of as the state of least energy. According to (1.5),
however, the energy of this state is

1X

k=1

1
2
~!k

which is clearly infinite. This is, to say the least, rather unfortunate, but seems to be
an unavoidable consequence of the formalism we are attempting to build. A mathe-
matician might conclude that we are headed in the wrong direction. Ever the prag-
matists, however, physicists simply throw out the o↵ending 1

2 in H and redefine the
Hamiltonian to be

H0 =
1X

k=1

~!kNk. (1.6)

This no doubt appears rather suspicious. Physicists have o↵ered a number of not-so-
convincing arguments to justify the maneuver (“Even classically the Hamiltonian is
determined only up to an additive constant so why should an ‘infinite constant’ be
any di↵erent?”). H0 is referred to as the renormalized Hamiltonian of the quantized
vibrating string and it certainly does away with the infinite ground state energy. As
we will see, however, not all of the “infinities” that plague quantum field theory are
so easily wished away.

In the Heisenberg picture of quantum mechanics the time evolution of the ob-
servables Qk and Pk is governed by

Qk(t) = eitH/~Qk(0)e�itH/~

(1.7)

Pk(t) = eitH/~Pk(0)e�itH/~.

Formally manipulating the various commutation relations for Qk and Pk with
[A, BC] = B[A,C] + [A, B]C, the Heisenberg equation for Qk(t) gives
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d
dt

Qk(t) = � i
~


Qk(t),

1
2

⇥
Pk(t)2 + !2

k Qk(t)2⇤
�

= � i
2~

⇥
Qk(t), Pk(t)2⇤ since

⇥
Qk(t),Qk(t)2⇤ = 0

= � i
2~

Pk(t)(i~) � i
2~

(i~)Pk(t) since [Qk(t), Pk(t)] = i~

so

d
dt

Qk(t) = Pk(t).

Exercise 1.1.2. Show, in the same way, that

d
dt

Pk(t) = �!2
k Qk(t).

It follows that

d2

dt2 Qk(t) + !2
k Qk(t) = 0.

Formally solving this harmonic oscillator equation gives

Qk(t) = Qk(0) cos!kt +
1
!k

Pk(0) sin!kt (1.8)

and then

Pk(t) = �Qk(0)!k sin!kt + Pk(0) cos!kt. (1.9)

In order to obtain our quantized version of the vibrating string we would like to
write Qk(t) in a slightly di↵erent form with the lowering and raising operators. For
this we will make use of the following exercise.

Exercise 1.1.3. Begin with

bk(t) = eit(~!k(Nk+
1
2 ))/~ bk e�it(~!k(Nk+

1
2 ))/~

and show that

d
dt

bk(t) = �i!kbk(t).

Conclude that

bk(t) = e�it!k bk and b†k(t) = eit!k b†k

Hint: d
dt e

tA = AetA = etAA and [bk,Nk] = bk.
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Now we return to the classical expression u(x, t) =
P1

k=1 Tk(t)
q

2
l sin k⇡x

l for the
motion of the string and make the relevant operator substitutions to obtain

U(x, t) =
1X

k=1

1p
⇢

Qk(t)

r
2
l

sin
k⇡x

l

=

1X

k=1

1p
⇢

 s
~

2!k

�
b†k(t) + bk(t)

��
r

2
l

sin
k⇡x

l

which simplifies to

U(x, t) =
p
~/m

1X

k=1

1p
!k


b†keit!k + bke�it!k

�
sin

k⇡x
l
. (1.10)

All of this is highly problematic, of course, since we have allowed ourselves
to compute with complete abandon and with no regard for the fact that we have
been dealing with unbounded operators on some, as yet unspecified, Hilbert space.
Nevertheless, (1.10) is historically the first attempt to write down a “quantized field”
and the derivation we have described is a rather simple instance of the no-holds-
barred approach that one often encounters in physics. We will conclude this section
with a few remarks that may point the way toward the more rigorous view of this
process that we will eventually describe in detail.

The first order of business is to say something about an appropriate choice for
the Hilbert space of the system. In Appendix B we considered a system of finitely
many harmonic oscillators with masses m1, . . . ,mN and frequencies !1, . . . ,!N .
We denoted by q1, . . . , qN the spatial coordinates for the N oscillators and by
L2(R, dq1), . . . , L2(R, dqN) the Hilbert spaces of these oscillators. Then the Hilbert
space H(N) of the system as a whole was taken to be the Hilbert space tensor product

H(N) = L2(R, dq1) ⌦ · · · ⌦ L2(R, dqN)

which can be identified with

L2(RN , dNq),

where q = (q1, . . . , qN) and dNq = dq1 · · · dqN is the Lebesgue measure on RN . One
might think then that the appropriate choice for the countably infinite collection of
oscillators with which we are modeling the vibrating string would be an infinite
tensor product of the Hilbert spaces L2(R, dqk), k = 1, 2, . . . How does one define
an infinite tensor product of Hilbert spaces? As it happens, this can be done (see
[v.Neu1]), but it is not so simple and the result is generally rather pathological. For
example, a tensor product of countably many separable Hilbert spaces of dimension
greater than one is never separable. Moreover, even if one is willing to forgive
the Hilbert space for being non-separable there is yet another issue. The following
remark is taken from page 87 of [SW].



1.1 The Non-Relativistic Vibrating String 9

... it is characteristic of field theory that some of its observables involve all of the
oscillators at once and it turns out that such observables can be naturally defined
only on vectors belonging to a tiny separable subset of the infinite tensor product.
It is the subspace spanned by such a subset which is the natural state space rather
than the whole infinite tensor product itself.

Streater and Wightman do not specify what this “tiny separable subset” is, but it is
identified in Section 4 of [ThWin]. Each such subset spans a subspace of the infinite
tensor product isomorphic to what is called a “Fock space”. These are Hilbert spaces
introduced into quantum field theory in 1932 by Vladimir Fock [Fock]. We will
describe them carefully in the next chapter.

Once this is done we will find that the expression (1.10) that we have “derived”
for the quantized field associated with the vibrating string is, as it stands, mathe-
matically meaningless since it diverges miserably even when applied to the ground
state and this time it does not help to throw out the infinite ground state energy by
redefining the Hamiltonian (see Remark 1.6). The real problem with U(x, t) as it
is defined in (1.10) is more subtle. Here the quantized field U purports to be an
operator-valued function of (x, t). This suggests that one can attach some physical
meaning to the value of a quantized field at a point in space or spacetime. But some-
thing has physical meaning only if it can be measured, at least in principle in some
gedanken experiment, and the problem of measurement in quantum mechanics is a
very subtle and still contentious one. At very least, however, it should be clear that
quantum mechanics (and, in particular, the Uncertainty Principle) will impose re-
strictions on the measurability of quantities that classical physics would lead one to
suspect are, in fact, measurable. This issue was taken up in 1933 by Bohr and Rosen-
feld [BR] in the case of the quantized electromagnetic field. Very detailed analyses
of the measurements involved led them to conclude that the value of a component
of the electromagnetic field at a point cannot be regarded as physically meaningful
in quantum mechanics. Rather, it is only average values of these components over
“small” regions that can be measured.

What seems to be emerging from this discussion is that, whatever the quantum
field U is supposed to be mathematically, it cannot reasonably be regarded as a
“function” either from the mathematical point of view (it is too singular) or the
physical (no physical meaning can be attached to its value at a point). The best one
can hope for is that U can be represented mathematically by some sort of “gen-
eralized function”. Nothing very exotic is being suggested here. Various types of
generalized functions are quite common. The elements of L2(X, µ), for example, be-
ing equivalence classes of functions on X that can di↵er on sets of µ-measure zero in
X, cannot be assigned values at the points of X, but they behave in many ways just
like square integrable functions on X. Tempered distributions onRN do not take val-
ues at the points of RN , but they are very natural and very useful generalizations of
a certain class of functions on RN , namely, those functions that give rise to regular
distributions.

It took some time for the appropriate definition to emerge, but in the end it was
determined that a quantum field is most accurately represented mathematically by
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an operator-valued distribution. We will see the precise definition somewhat later,
but essentially this is just a linear map from a Schwartz space to the unbounded
operators on a Hilbert space that is continuous in an appropriate sense. We will find
that, when quantum fields are viewed as operator-valued distributions, meaningless
formulas such as (1.10) can often be salvaged.

Remark 1.1.4. The historical and physical evolution of this view of quantum fields
as operator-valued distributions is traced in some detail in [Wight]. This paper also
contains more information about the quantized vibrating string.

1.2 The Klein-Gordon Field

In the previous section we tried to follow the line of thought one might find in
the physics literature for arriving at a quantized version of the classical field repre-
senting the vibrations of a string. This involved some rather dubious mathematical
manipulations and the end result appeared to su↵er from rather severe di�culties
that we briefly described, but made no attempt to resolve. Nevertheless, we would
now like continue along this course and try to do something similar for the more
interesting example of the classical Klein-Gordon field. We will begin with a brief
synopsis of some of what we already know about the classical field and then plunge
into the formal arguments used by physicists to quantize it. Following this we will
describe, in the next chapter, some of the mathematical machinery required for the
rigorous model of the quantum Klein-Gordon field presented in the final chapter.

Throughout this section we will employ natural units (~ = c = 1). A point x
in Minkowski spacetime R1,3 will be written as either (x0, x1, x2, x3) or (t, x), while
a point p in momentum space P1,3 is denoted either (p0, p1, p2, p3) or (p0,p). The
Klein-Gordon Lagrangian density, action and equation for a real-valued function
'(x) are

L(', @↵') =
1
2

(@↵' @↵' � m2'2),

S ['] =
1
2

Z

R1,3
(@↵' @↵' � m2'2) d4x,

and

(@↵@↵ + m2)' = 0,

or

(⇤ + m2)' = 0.

The spatial integral of the Lagrangian density L is denoted
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L =
Z

R3
L d3x = 1

2

Z

R3
(@↵' @↵' � m2'2) d3x

and called simply the Lagrangian. The action is the time integral of the Lagrangian.
The momentum density conjugate to ' is defined by

@L

@(@0')
= @0'

de f
= '̇.

Writing r' for the spatial gradient (@1', @2', @3') this gives, as the analogue of the
Hamiltonian in mechanics, the Hamiltonian density

H(', '̇) =
1
2
�
'̇2 + r' · r' + m2'2 �

.

The spatial integral

H(', '̇) =
Z

R3
H(', '̇) d3x = 1

2

Z

R3

�
'̇2 + r' · r' + m2'2 �

d3x

of the Hamiltonian density is then called simply the Hamiltonian.

Remark 1.2.1. Notice that we have pushed a great many technical issues under the
rug here. For example, we have seen that the appropriate domain for the Hamiltonian
is H1(R3;R) � L2(R3;R), but made no mention of the fact. What we propose to do
in this section is all quite formal and not to be taken too seriously as mathematics.
As a result, we see no need to be scrupulous about such things until we get back to
doing mathematics.

“Shut up and calculate!”

Applying the Minkowski Fourier transform FM to the Klein-Gordon equation on
R1,3 gives its momentum space version

(p2 � m2)FM' = 0

on P1,3. From this we concluded that the (classical and distributional) solutions to
the Klein-Gordon equation on R1,3 are precisely the inverse Fourier transforms of
distributions on P1,3 that are supported on the mass hyperboloid Xm = X+m t X�m. On
the upper branch X+m of Xm one has a Lorentz invariant Borel measure µm defined
as follows. For any Borel set B ✓ X+m, the projection ⇡+(B) of B into R3 is a Borel
subset of R3 and we define

µm(B) =
Z

⇡+(B)

d3p
2!p

=

Z

⇡+(B)

d3p
2

p
m2 + kpk2

,

where d3p = dp1 dp2 dp3 denotes integration with respect to Lebesgue measure on
R3. The analogously defined Lorentz invariant measure on X�m is also denoted µm.
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With these one can define distributions �±(p2 � m2) on P1,3 supported on X±m and
from them, in turn, a class of solutions '(x) to the Klein-Gordon equation on R1,3.
In particular, if we let p = (!p,p) denote an arbitrary point of X+m, then for any
x = (t, x) in R1,3 we define

'(x) = '(t, x) =
1

(2⇡)3/2

Z

R3

1
2!p

�
e�i(!pt�p·x) A(p) + ei(!pt�p·x) A(p)

�
d3p

(1.11)

=
1

(2⇡)3/2

Z

R3

1
2!p

�
e�ihp,xi A(p) + eihp,xi A(p)

�
d3p,

where A : R3 ! C is a smooth function with compact support. In fact, one need
only assume that A is a Schwartz function or, indeed, any function with su�cient
regularity and su�ciently rapid decay at infinity.

Remark 1.2.2. Note that we have slightly altered the notation used in Section 2.2 of
[Nab7] in order to obtain formulas that are more easily compared with those found
in the physics literature.

The solution (1.11) is a classical Klein-Gordon field and it is this object that we
would like to quantize. What we will describe is essentially the argument one finds
in every quantum field theory text (see, for example, Section 4.1 of [Ryd] or Section
12.1 of [BD2]).

Remark 1.2.3. Before getting started, however, we should say a few words about
some of the tools physicists use in these calculations. For example, the Dirac delta
�(x � y) is a singular distribution defined for every �(y) 2 S(RN) by

�(x � y)[�(x)] = �(y)

and we have noted that it is not uncommon to write this as if �(x � y) were a honest
function defining a regular distribution, that is,

Z

RN
�(x � y)�(x) dN x = �(y). (1.12)

This is mathematical nonsense, of course, since �(x � y) is certainly not a function
and the integral on the left-hand side is not defined. Its popularity in the physics lit-
erature is due to the fact that if one allows oneself to take it seriously as an integral,
then many of the integrals one must evaluate in quantum field theory become partic-
ularly easy. On the surface of it this does not at all sound like adequate justification
for pretending that something makes sense when it does not. The point, however, is
that one can often salvage such an argument by regarding it as an abbreviation for
a limit statement that we will describe in a moment and that, even if the argument
cannot be salvaged, in physics it is the end result that counts. The end result may or
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may not be correct, but this is something one checks by looking at its consequences
and comparing them with observations.

The procedure for regarding such integral formulas as limit statements goes like
this. One chooses a sequence �n(x � y), n = 1, 2, . . . , of (honest) functions with the
property that, for every �(y) 2 S(RN),

lim
n!1

Z

RN
�n(x � y)�(x) dN x = �(y). (1.13)

These are called delta sequences and many such are known (see Example 1.2.1
below). Then one thinks of �(x�y) as the limit in S0(RN) of the regular distributions
corresponding to �n(x � y) and takes (1.13) as the definition of (1.12).

Example 1.2.1. As an illustration we will exhibit a delta sequence when N = 1. For
each n = 1, 2, . . . we define

�n(x � y) =
r

n
⇡

e�n(x�y)2

Exercise 1.2.1. Show that, for each y 2 R,
Z 1

�1
�n(x � y)dx = 1

for each n = 1, 2, . . . Hint: These are Gaussian integrals so you may wish to consult
Appendix A of [Nab5]; the required integration formulas are on page 520.

Now we must show that, for any � 2 S(R),

lim
n!1

Z 1

�1
�n(x � y)�(x)dx = �(y).

For this we compute as follows. Fix � 2 S(R) and y 2 R. Then
�����

Z 1

�1
�n(x � y)�(x)dx � �(y)

����� =
�����

Z 1

�1
�n(x � y) (�(x) � �(y))dx

�����


Z 1

�1

����n(x � y)
���
����(x) � �(y)

��� dx

 max
c2R

����0(c)
���
r

n
⇡

Z 1

�1
e�n(x�y)2 |x � y| dx

Exercise 1.2.2. Show that
r

n
⇡

Z 1

�1
e�n(x�y)2 |x � y| dx =

1p
⇡n
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(Appendix A of [Nab5]) so that

�����

Z 1

�1
�n(x � y)�(x)dx � �(y)

����� 
maxc2R

����0(c)
���

p
⇡n

! 0 as n! 1

as required.

Thus one thinks of �(x � y) intuitively as the limit in S0(R) of the regular distri-
butions determined by

q
n
⇡ e�n(x�y)2 . One even writes

�(x � y) = lim
n!1

r
n
⇡

e�n(x�y)2

with the understanding that this is an equality of distributions.

Exercise 1.2.3. Show that the defining property of the distribution �(x � y) could
equally well be written heuristically as

Z

RN
�(x � y)�(y) dNy = �(x)

for all �(y) 2 S(RN) and all x 2 RN .

In the same spirit one finds in the physics literature considerable reliance on what
are called integral representations of the Dirac delta such as the following (see [LW]
for many others).

�(x � y) =
1

(2⇡)N

Z

RN
eip·(x�y) dN p, (1.14)

where the dot in the exponent is the inner product on RN . One might well wonder
what this could possibly mean. After all, the integral on the right clearly diverges
and, even if it converged, it would be a function and therefore could not be equal to
the singular distribution �(x�y). Needless to say, (1.14) is intended to be a shorthand
notation for a more complicated statement saying, in e↵ect, that the integral acts on
Schwartz functions in the same way as the Dirac delta. Specifically, it means that
for any �(y) 2 S(RN) and for any x 2 RN ,

Z

RN

 Z

RN

1
(2⇡)N eip·(x�y)�(y) dNy

�
dN p = �(x). (1.15)

We will see in a moment that this integral actually makes sense. Notice that if one
formally reverses the order of the integrations the result can be written

�(x) =
Z

RN

 Z

RN

1
(2⇡)N eip·(x�y) dN p

�
�(y) dNy
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which doesn’t make sense, but should be compared with

�(x) =
Z

RN
�(x � y)�(y) dNy.

This is where (1.14) comes from. To see that the integral (1.15) actually does make
sense we simply note that it is essentially a restatement of the Fourier Inversion
Theorem for Schwartz functions, that is,

�(x) = (F�1(F�))(x) =
1

(2⇡)N/2

Z

RN
eip·x

 1
(2⇡)N/2

Z

RN
e�ip·y�(y) dNy

�
dN p.

Notice that, since the arrangement of signs in the exponents in the definitions of
F and F�1 is a matter of convention and varies with the source, one is also likely to
see (1.14) written as

�(x � y) =
1

(2⇡)N

Z

RN
e�ip·(x�y) dN p. (1.16)

For future reference we also point out that �(x + y) = �(x � (�y)) satisfies
Z

RN
�(x + y)�(x) dN x = �(�y) (1.17)

and is given by either one of the following formal expressions.

�(x + y) =
1

(2⇡)N

Z

RN
e±ip·(x+y) dN p (1.18)

It has been said that one of the di↵erences between mathematicians and physi-
cists is that the former do not like to compute with things that don’t exist; in this
section we will need to get over that.

With these remarks behind us we will now return to the classical Klein-Gordon
field (1.11). We begin by simplifying the form of (1.11) as follows. Define, for each
p = (!p,p) 2 X+m, the function fp on R1,3 by

fp(x) =
1

p
(2⇡)32!p

e�ihp,xi.

Notice that, since !�p = !p,

f p = f�p

These are, of course, complex solutions to the Klein-Gordon equation and (1.11)
can now be written
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'(x) =
Z

R3

1
p

2!p

�
fp(x)A(p) + f p(x)A(p)

�
d3p. (1.19)

It will also be convenient to renormalize A(p) by absorbing the factor 1p
2!p

into it

so we will let

a(p) =
1

p
2!p

A(p)

and write '(x) as

'(x) =
Z

R3
( fp(x)a(p) + f p(x)a(p) ) d3p. (1.20)

Next we would like to show that the functions fp satisfy what the physicists call
generalized orthogonality conditions. For this they generally introduce the follow-
ing notation.

A
$
@0 B = A

✓@B
@t

◆
�

✓@A
@t

◆
B

Remark 1.2.4. For some motivation as to where the next definition comes from one
should look back to Section 2.3 of [Nab7] for the conserved quantity associated to
the internal U(1)-symmetry of complex Klein-Gordon fields. Assuming appropriate
regularity and decay conditions this is given by

Z

R3
j0(x0, x) d3x = i

Z

R3

⇥
'(x)@0'(x) � @0'(x)'(x)

⇤
x0=0 d3x

= i
Z

R3

⇥
'(x)

$
@0 '(x)

⇤
x0=0 d3x.

where we have evaluated the integrand at x0 = 0, but note that that any other fixed
value of x0 would do just as well since the quantity is conserved.

Exercise 1.2.4. Show that if '(x) = e�ihp,xi, p 2 Xm, is a plane wave solution, then
this is infinite.

Now, if '1 and '2 are two solutions, we define the Klein-Gordon inner product
of '1 and '2 by

('1,'2) = i
Z

R3

⇥
'1(x)

$
@0 '2(x)

⇤
x0=0 d3x. (1.21)

Note that if ' is any solution, then the conserved quantity mentioned in the previous
Remark is just (','). It follows that in (1.21) one could evaluate the integrand at any
fixed value of x0 and the result would be the same. In other words, the definition of
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('1,'2) is independent of the constant time hypersurface over which the integration
takes place. As we just saw, (',') might well be infinite.

Exercise 1.2.5. Show that, if '1 and '2 are solutions for which ('1,'2) is finite and
↵ and � are complex numbers, then (↵'1,'2) = ↵('1,'2), ('1, �'2) = �('1,'2), and

('2,'1) = ('1,'2).

One of the “orthogonality conditions” to which we referred is then as follows.

( fp0 , fp) = �(p � p0) (1.22)

for all p, p0 2 X+m. Once again, such apparently nonsensical identities will require
some interpretation so we will give the argument in detail; one should keep in mind
(1.14) and the meaning we ascribed to it in (1.15). First we will compute

f p0 (x)
$
@0 fp(x) = f p0 (x)

@ fp(x)
@t

�
@ f p0 (x)
@t

fp(x)

=
1

p
(2⇡)32!p0

eihp0,xi(�i!p)
1

p
(2⇡)32!p

e�ihp,xi

� (i!p0 )
1

p
(2⇡)32!p0

eihp0,xi 1
p

(2⇡)32!p
e�ihp,xi

= �i
1

(2⇡)3

!p + !p0

2p!p!p0
eihp0�p,xi

= �i
1

(2⇡)3

!p + !p0

2p!p!p0
ei ( (!p0 �!p)t�(p0�p)·x )

At x0 = t = 0 this gives

⇥
f p0 (x)

$
@0 fp(x)

⇤
t=0 = �i

1
(2⇡)3

!p + !p0

2p!p!p0
eix·(p�p0).

Consequently,

( fp0 , fp) =
!p + !p0

2p!p!p0

Z

R3

1
(2⇡)3 eix·(p�p0) d3x

=

Z

R3

1
(2⇡)3 eix·(p�p0)

✓ !p + !p0

2p!p!p0

◆
d3x

The claim in (1.22) is that this should be “equal to” �(p� p0). We will check this by
using the definition (1.15) of (1.14). For this we let �(p0) be an arbitrary Schwartz
function on R3 and note that
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Z

R3

 Z

R3

1
(2⇡)3 eix·(p�p0)

✓ !p + !p0

2p!p!p0

◆
�(p0)d3p0

�
d3x =

!p + !p

2p!p!p
�(p) = �(p)

as required.

Exercise 1.2.6. The second of our “orthogonality conditions” is

( f p0 , fp) = 0 (1.23)

for all p, p0 2 X+m. Prove this.

Now we consider a Klein-Gordon solution of the form (1.20)

'(x) =
Z

R3
( fp(x)a(p) + f p(x)a(p) ) d3p

and compute

(', fp) =
✓ Z

R3
( fp0 a(p0) + f p0 a(p0) ) d3p0, fp

◆

=

Z

R3

�
( fp0 , fp) a(p0) + ( f p0 , fp) a(p0)

�
d3p0 (Exercise 1.2.5)

=

Z

R3
�(p � p0) a(p0) d3p0

= a(p).

Thus,

a(p) = (', fp) = i
Z

R3
['(x)

$
@0 fp(x)]x0=0 d3x (1.24)

because ' is real. Taking conjugates then gives

a(p) = (', fp) = ( fp,') = i
Z

R3
[ f p(x)

$
@0 '(x)]x0=0 d3x. (1.25)

So far in this section we have just taken another look at the classical Klein-
Gordon field (1.11) and have rewritten it in the form (1.20), where a(p) and a(p) are
given by (1.25) and (1.24), respectively. Why we have bothered to do this may not
be so clear at the moment. To understand the significance of (1.20) we must now
proceed with the business of quantizing the classical field '(x). How is this done?
From the perspective of physics it is all quite clear (see Appendix A). In classical
particle mechanics the position q and conjugate momentum p have coordinates that
satisfy the commutation relations

{q j, qk} = {p j, pk} = 0 and {q j, pk} = � j
k, j, k = 1, . . . n.
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In quantum mechanics q j and p j are promoted to the status of self-adjoint (physicists
would say Hermitian) operators Qj and Pj on some Hilbert space H that satisfy the
corresponding quantum commutation relations

[Qj,Qk] = [Pj, Pk] = 0 and [Qj, Pk] = i� j
k, j, k = 1, . . . n, (1.26)

where the identity operator is understood on the right-hand side of the last equality
and we have taken ~ = 1.

Remark 1.2.5. Keep in mind that in this section (alone) we are setting aside many
serious mathematical issues such as domains and commutators for unbounded op-
erators; these are discussed more carefully in Appendix A.

The index j in mechanics labels the number of degrees of freedom in the me-
chanical problem. In field theory this role is played by x = (t, x) 2 R1,3 so a field
is said to have infinitely many degrees of freedom. The field theoretic analogue of
the position component Qj is the value of the field at x. For the Klein-Gordon field
this is '(t, x) and the conjugate momentum is '̇(t, x). The canonical quantization
of the Klein-Gordon field would have us identify '(t, x) and '̇(t, x) with operators
(for which we will use the same symbols) satisfying the analogue of (1.26) which is
taken to be the so-called equal time commutation relations

['(t, x),'(t, y)] = ['̇(t, x), '̇(t, y)] = 0 and ['(t, x), '̇(t, y)] = i�(x � y), (1.27)

where the identity operator is understood on the right-hand side of the last equality.

Remark 1.2.6. There is something rather disconcerting about the last of these com-
mutation relations. For each (t, x) 2 R1,3, '(t, x) and '̇(t, x) are intended to be
operators on some Hilbert space so the same should be true of their commutator
['(t, x), '̇(t, y)]. On the other hand, �(x � y) is a distribution so it operates on test
functions to give multiples of the identity operator. The left- and right-hand sides
are of di↵erent species and it is not so clear in what sense they can be equal. One
should keep in mind, however, that we have already seen that a quantum field can-
not really be thought of an operator-valued function '(t, x) on R1,3, but rather must
be regarded as an operator-valued distribution. When we get around to formulating
more mathematically precise definitions this issue, at least, will be resolved. What
will not be resolved is how one actually represents these commutation relations as
operator-valued distributions on some Hilbert space, but we will get around to this
as well.

Now suppose the classical solution we have in mind is of the form (1.20). Quan-
tization promotes '(t, x) to the status of an operator (on some as yet unspecified
Hilbert space) so it does the same for a(p). For operators, as opposed to functions,
however, a “real” solution is one that is self-adjoint since these have a real spectrum.
In particular, as quantum mechanical observables, the measured values are real as
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all measured values must be. Consequently, the conjugate in a(p) is replaced in the
quantized field by the adjoint a†(p). What we intend to do therefore is to look for
quantized Klein-Gordon fields of the form

'(x) =
Z

R3
( fp(x) a(p) + f p(x) a†(p) ) d3p, (1.28)

where

a(p) = i
Z

R3
[ f p(x)

$
@0 '(x)]x0=0 d3x (1.29)

and

a†(p) = i
Z

R3
['(x)

$
@0 fp(x)]x0=0 d3x (1.30)

are operators on some Hilbert space. Needless to say, even the rather problematic
computations that we have allowed ourselves up to this point pale in comparison
to the mathematical issues raised by formulas such as these. Nevertheless, we will
persevere (“Shut up and calculate”) and see if, in the end, we can formulate some
precise mathematics that does what we would like to do. The key to this lies with
the operators a(p) and a†(p) so we would first like to compute (still quite formally)
the commutation relations for these operators that are implied by the equal time
commutation relations (1.27).

[a(p), a†(p0)] =


i
Z

R3
[ f p(x)

$
@0 '(x)]x0=0 d3x, i

Z

R3
['(y)

$
@0 fp0 (y)]y0=0 d3y

�

= �
Z

R3

Z

R3


f p(x)

$
@0 '(x), '(y)

$
@0 fp0 (y)

�

x0=0, y0=0
d3x d3y

Exercise 1.2.7. Compute the commutator and show that


f p(x)
$
@0 '(x), '(y)

$
@0 fp0 (y)

�
= � f p(x) ḟp0 (y)

⇥
'(y), '̇(x)

⇤
+ ḟ p(x) fp0 (y)

⇥
'(x), '̇(y)

⇤

+ ḟ p(x) ḟp0 (y)
⇥
'(y),'(x)

⇤
+ f p(x) fp0 (y)

⇥
'̇(y), '̇(x)

⇤
.

From this we conclude that
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�
Z

R3

Z

R3


f p(x)

$
@0 '(x), '(y)

$
@0 fp0 (y)

�

x0=0, y0=0
d3x d3y

= i
Z

R3

Z

R3
f p(x) ḟp0 (y)

���
x0=0, y0=0�(y � x) d3x d3y

� i
Z

R3

Z

R3
ḟ p(x) fp0 (y)

���
x0=0, y0=0�(x � y) d3y d3x

= i
Z

R3
f p(y) ḟp0 (y)

���
y0=0 d3y � i

Z

R3
ḟ p(x) fp0 (x)

���
x0=0 d3x

= i
Z

R3
[ f p(x)

$
@0 fp0 (x)]x0=0 d3x

= ( fp, fp0 )

and so

[a(p), a†(p0)] = �(p0 � p). (1.31)

Exercise 1.2.8. Show that

[a(p), a(p0)] = [a†(p), a†(p0)] = 0. (1.32)

The point of these computations can be seen by comparing (1.31) and (1.32) with
the commutation relations (B.10)

[b j, bk] = [b†j , b
†
k] = 0 and [b j, b†k] = � jk, j, k = 1, . . . ,N

for the raising and lowering operators of the harmonic oscillator. Taking this anal-
ogy seriously would raise the possibility of studying the quantized Klein-Gordon
field along the same lines as the harmonic oscillator. One would begin by reinter-
preting a(p) and a†(p) as operator-valued distributions rather than operator-valued
functions so that (1.31) at least makes sense and then looking for a Hilbert space H
on which the commutation relations (1.31) and (1.32) could be realized as opera-
tors. We will deal with this problem in the next chapter. This done one can mimic
the treatment of the harmonic oscillator in terms of raising and lowering operators
(outlined in Appendix B and treated in more detail in Section 7.4 of [Nab5]). As
a simple illustration we will conclude this section by expressing the Klein-Gordon
Hamiltonian

H(', '̇) =
Z

R3
H(', '̇) d3x = 1

2

Z

R3

�
'̇2 + r' · r' + m2'2 �

d3x (1.33)

in terms of a and a†. Thus, we let

'(x) =
Z

R3
( fp(x) a(p) + f p(x) a†(p) ) d3p, (1.34)
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and compute each of the three terms in the Hamiltonian. Begin by noting that

m2'2(x) = m2
Z

R3

Z

R3

⇥
fp(x)a(p) + f p(x)a†(p)

⇤ ⇥
fp0 (x)a(p0) + f p0 (x)a†(p0)

⇤
d3p d3p0

=

Z

R3

Z

R3

⇥
fp(x) fp0 (x)a(p)a(p0) + fp(x) f p0 (x)a(p)a†(p0)+

f p(x) fp0 (x)a†(p)a(p0) + f p(x) f p0 (x)a†(p)a†(p0)
⇤
d3p d3p0

=
m2

(2⇡)3

Z

R3

Z

R3

1
2p!p!p0


a(p)a(p0)e�ihp+p0,xi + a(p)a†(p0)e�ihp�p0,xi+

a†(p)a(p0)eihp�p0,xi + a†(p)a†(p0)eihp+p0,xi
�

d3p d3p0. (1.35)

We will eventually insert this into the Hamiltonian H(', '̇) and perform the spatial
integral. However, just as in classical mechanics the Hamiltonian is conserved so
we can evaluate the integrand of m2'2(x) at any convenient value of x0 = t and we
might as well do so now. At x0 = 0, (1.35) becomes

m2'2(0, x) =
m2

(2⇡)3

Z

R3

Z

R3

1
2p!p!p0


a(p)a(p0)eix·(p+p0) + a(p)a†(p0)eix·(p�p0 )+

a†(p)a(p0)e�ix·(p�p0) + a†(p)a†(p0)e�ix·(p+p0)
�

d3p d3p0. (1.36)

Performing the x-integration of m2'2(0, x) each exponential produces (2⇡)3 times a
delta function which, in turn, allows us to perform the p0-integral.
Z

R3
m2'2(0, x)d3x = m2

Z

R3

Z

R3

1
2p!p!p0


a(p)a(p0)�(p + p0) + a(p)a†(p0)�(p � p0)+

a†(p)a(p0)�(p � p0) + a†(p)a†(p0)�(p + p0)
�

d3p0 d3p

=

Z

R3

1
2!p


m2⇥ a(p)a(�p) + a†(p)a†(�p)

⇤
+

m2⇥ a(p)a†(p) + a†(p)a(p)
⇤ �

d3p

Exercise 1.2.9. Carry out similar computations for the first and second terms in the
Hamiltonian (1.33) to show that

H(', '̇) =
1
2

Z

R3

�
'̇2(0, x) + r'(0, x) · r'(0, x) + m2'2(0, x)

�
d3x

=
1
2

Z

R3

1
2!p


(�!2

p + p · p + m2)
⇥
a(p)a(�p) + a†(p)a†(�p)

⇤
+

(!2
p + p · p + m2)

⇥
a(p)a†(p) + a†(p)a(p)

⇤ �
d3p
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However, since (!p,p) is in X+m, �!2
p + p · p+m2 = 0 and !2

p + p · p+m2 = 2!2
p

so this reduces to

H(', '̇) =
Z

R3
!p

⇥
a†(p)a(p) +

1
2
�(0)

⇤
d3p, (1.37)

where, as usual, the identity operator is understood after �(0).

Exercise 1.2.10. Verify (1.37).

Notice that, if we introduce the number density operator N(p) by

N(p) = a†(p)a(p),

then the Hamiltonian can be written as

H(', '̇) =
Z

R3
!p

⇥
N(p) +

1
2
�(0)

⇤
d3p (1.38)

which should be compared with the corresponding result (1.5) for the vibrating
string (with ~ = 1). The term 1

2�(0) introduces the same di�culties that we saw
in this early case (see Remark 1.6). Specifically, once we have specified a Hilbert
space on which all of these operators are supposed to be operating we will find that
it contains a ground state  0 , that is, a state of least energy, that is annihilated by
each a(p) and therefore by each N(p). Applying the Hamiltonian operator to this
state, however, gives

✓ Z

R3

!p

2
�(0) d3p

◆
 0

and the coe�cient of  0 is infinite. To see this think of the distribution �(0) as acting
on a test function � to give �(0) and note that

Z

R3

!p

2
d3p

clearly diverges. Assuming that one has no problem with subtracting infinities one
can, as for the vibrating string, proceed in the manner of the physicists to remove
this di�culty by simply subtracting the o↵ending term !p

2 �(0) and redefining the
Hamiltonian to be

H0(', '̇) =
Z

R3
!pN(p) d3p

(see page 131 of [Ryd] or page 30 of [BD2]).

Remark 1.2.7. In the formalism that we have gotten just a very small taste of in this
section and the last these infinities are ubiquitous, particularly when interactions
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among various fields are taken into account. The physicists have developed very
complex and ingenious techniques, known as regularization and renormalization,
for extracting useful information from them. This is an enormous and technically
very demanding subject that we are in no way prepared to deal with here. Those
interested in pursuing this might consult Chapter 9 of [Ryd], Chapter 19 of [BD2]
or, for a somewhat more mathematical slant on the subject, Chapter 7 of [Fol3].

Exercise 1.2.11. Take the analogy with the harmonic oscillator one step farther by
defining operators

P(p) =
r
!p

2
�
a(p) + a†(p)

�
and Q(p) =

i
p

2!p

�
a(p) � a†(p)

�

and then show that

H(', '̇) =
Z

R3

1
2

P2(p) +
!2

p

2
Q2(p)

�
d3p

so that one can think of the Klein-Gordon field as a continuous sum of harmonic
oscillators, one for each p = (!p,p) 2 X+m.

At this point we are more than ready to put behind us all of these very formal
computations and return to our comfort zone, that is, mathematics. For those who
would like to see more of how these ideas are developed by the physicists we refer
to Sections 4.1 and 4.2 of [Ryd], Chapter 12 of [BD2], or essentially any other
quantum field theory text.



Appendix A
Canonical Quantization

In this section we will assume a familiarity with the foundations of quantum me-
chanics as laid out, for example, in Appendix A.4 of [Nab6] or, in more detail, in
Chapter 6 of [Nab5]. In particular, we refer to the Heisenberg equation

dA
dt
= � i
~

⇥
A,H

⇤
.

((A.19) of [Nab6]) and its striking similarity to the equation

d f
dt
= { f ,H}

describing the time evolution of a classical observable in the Hamiltonian picture of
classical mechanics ((A.9) of [Nab6]). This suggested to Paul Dirac [Dirac1] a pos-
sible avenue from classical to quantum mechanics, that is, a possible approach to the
quantization of classical mechanical systems. The idea is that classical observables
f should be replaced by self-adjoint operators A and the Poisson bracket { , } by the
quantum bracket

�
,
 
~ = �

i
~

⇥
,
⇤
.

The process of implementing Dirac’s proposal for obtaining the quantum ana-
logue of a classical mechanical system is known as canonical quantization in the
physics literature. We will review a few examples of how this is done in Appendix
B, but first we must isolate some of the rather substantial mathematical di�culties
involved in order to have in hand a rigorous version of Dirac’s rather heuristic pro-
gram. All of this is discussed in much more detail in Sections 7.2, 7.3, and 7.4 of
[Nab5] so here we will content ourselves with a schematic.

Dirac is asking us for a “representation” of the algebra of classical observables
by self-adjoint operators on some Hilbert space, but we will find that this is much
too tall an order so we begin with something less ambitious. We will try to find a
“representation” of just the classical canonical commutation relations

25
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{qi, q j} = {pi, p j} = 0 and {qi, p j} = �i
j, i, j = 1, . . . n

from classical mechanics by self-adjoint operators. The first order of business is to
define precisely what it is we are trying to “represent” and what “representation”
means. The abstract context in which the canonical commutation relations live is
described as follows.

Let n � 1 be an integer. The (2n+1)-dimensional Heisenberg algebra h2n+1 is a
(2n+1)-dimensional, real Lie algebra with a basis {X1, . . . , Xn,Y1, . . . ,Yn,Z} relative
to which the bracket [ , ] is determined by

[Xi, Xj] = [Yi,Yj] = [Xi,Z] = [Yi,Z] = 0, [Xi,Yj] = �i jZ, i, j = 1, . . . , n.

The Heisenberg algebra h2n+1 can be realized concretely in a number of ways. Here
are two such.

1. Let C1(T ⇤Rn;R) = C1(R2n;R) be the Lie algebra, relative to the Poisson
bracket, of classical observables for a mechanical system with configuration
spaceRn. Then h2n+1 is isomorphic to the Lie subalgebra of C1(T ⇤Rn;R) gener-
ated by {q1, . . . , qn, p1, . . . , pn, 1}. Notice that the elements of this subalgebra are
just the classical observables that are linear in the canonical coordinates.

2. Let gl(n + 2;R) be the Lie algebra of all (n + 2) ⇥ (n + 2) real matrices with the
matrix commutator as bracket. Then h2n+1 is isomorphic to the Lie subalgebra of
gl(n + 2;R) consisting of those matrices of the form

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

0 x1 x2 · · · xn z
0 0 0 · · · 0 y1

0 0 0 · · · 0 y2

...
...
... · · ·

...
...

0 0 0 · · · 0 yn

0 0 0 · · · 0 0

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBB@

0 x z
0 0n y
0 0 0

1
CCCCCCCCA ,

where 0n is the n ⇥ n zero matrix, 0 is the zero vector in Rn and x and y are
arbitrary vectors in Rn (unless it causes some confusion, we will allow the con-
text to indicate whether the elements of Rn are to be regarded as row or column
vectors).

The simply connected Lie group whose Lie algebra is h2n+1 is called the (2n+1)-
dimensional Heisenberg group and denoted H2n+1. This can be described in a num-
ber ways. As a matrix group, H2n+1 consists precisely of those (n + 2) ⇥ (n + 2) real
matrices of the form

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 a1 a2 · · · an c
0 1 0 · · · 0 b1

0 0 1 · · · 0 b2

...
...
... · · ·

...
...

0 0 0 · · · 1 bn

0 0 0 · · · 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBB@

1 a c
0 In b
0 0 1

1
CCCCCCCCA ,
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where In is the n ⇥ n identity matrix. The matrix exponential map is a bijection of
h2n+1 onto H2n+1 and is given by

0
BBBBBBBB@

0 x z
0 0n y
0 0 0

1
CCCCCCCCA �!

0
BBBBBBBB@

1 x z + 1
2 hx, yi

0 In y
0 0 1

1
CCCCCCCCA ,

where hx, yi is the usual Rn-inner product.
Alternatively, we can identify R2n+1 with T ⇤Rn ⇥ R = R2n ⇥ R and define a

nondegenerate, skew-symmetric, bilinear form ! on T ⇤Rn = R2n = Rn ⇥Rn by

!( (x, y), (x0, y0) ) = hx, y0i � hx0, yi.

Then H2n+1 is isomorphic to T ⇤Rn ⇥R = R2n ⇥R with the group structure defined
by

(x, y, z)(x0, y0, z0) = ( x + x0, y + y0, z + z0 +
1
2
!( (x, y), (x0, y0) ).

Our problem then is to “represent” the Heisenberg Lie algebra by self-adjoint
operators on some Hilbert space. However, the self-adjoint operators we have in
mind are generally unbounded and these certainly do not form a Lie algebra under
the quantum bracket so the appropriate notion of “representation” is not simply “Lie
algebra representation”. To hone in on the appropriate definition we will look at the
most important example.

Example A.0.1. (Schrödinger Realization of the Heisenberg Algebra) We begin with
n = 1, that is, with the 3-dimensional Heisenberg algebra h3. Write q1 = q and
p1 = p for the canonical coordinates on T ⇤R = R2 and take H to be the Hilbert
space L2(R). On the Schwartz space S(R) ✓ L2(R) we define operators Q and P by

(Q )(q) = q (q)

and

(P )(q) = �i~
d

dq
 (q).

S(R) is invariant under both, that is,

Q : S(R)! S(R)

and

P : S(R)! S(R).

Consequently, the commutator [Q, P] is well-defined on S(R) and a quick compu-
tation shows that



28 A Canonical Quantization

[Q, P] = (QP � PQ) = i~ 8 2 S(R).

If we identify X1 with Q, Y1 with P and Z with i~I we see that the defining relations
for h3 are satisfied on S(R).

Both Q and P are essentially self-adjoint on S(R) (Exercise 5.2.8 of [Nab5]) so
they have unique, unbounded, self-adjoint extensions to L2(R) that we will denote
by the same symbols

Q : D(Q) ✓ L2(R)! L2(R)

and

P : D(P) ✓ L2(R)! L2(R).

Their domains are given by

D(Q) =
⇢
 2 L2(R) : k q (q) k2L2 =

Z

R

q2| (q)|2dq < 1
�

(Example 5.2.3 of [Nab5]) and

D(P) =
⇢
 2 L2(R) :  2 AC[a, b]8a < b inR and

d 
dq
2 L2(R)

�
,

where AC[a, b] denotes the set of all complex-valued, absolutely continuous func-
tions on the interval [a, b] (Example 5.2.4 o [Nab5]). Q and P are called, respec-
tively, the position and momentum operators on L2(R).

Being self-adjoint, each of the operators P and Q determines, by Stone’s Theo-
rem, a unique strongly continuous 1-parameter group of unitary operators on L2(R)
which we will denote by

{Ut}t2R = {eitP}t2R

and

{Vs}s2R = {eisQ}s2R,

respectively. For future reference we note that in Example 7.2.4 of [Nab5] it is
shown that

UtVs = ei~tsVsUt

on L2(R) for all s, t 2 R so that Ut and Vs commute up to a phase factor.

The situation described in this example is essentially the closest one can come to
the notion of a “representation” of the Heisenberg Lie algebra h3 by unbounded self-
adjoint operators so we are led to formulate the following definition. A realization
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of h3 on the separable, complex Hilbert space H consists of a dense linear subspace
D of H and two operators Q and P on H with D ✓ D(Q) and D ✓ D(P) that satisfy

1. Q : D! D and P : D! D,
2. [Q, P] = (QP � PQ) = i~ 8 2 D, and
3. Q and P are essentially self-adjoint on D.

In this case we say that the unique self-adjoint extensions of Q and P, denoted by
the same symbols, satisfy the canonical commutation relations. The realization of
h3 that we have just described is called the Schrödinger realization of h3.

More generally, a realization of h2n+1 on a separable, complex Hilbert space H
consists of a dense linear subspace D of H and operators Q1, . . . ,Qn, P1, . . . , Pn on
H with D ✓ D(Qj) and D ✓ D(Pk), j, k = 1, . . . , n, that satisfy

1. Qj : D! D and Pk : D! D for all j, k = 1, . . . , n,
2. [Qj,Qk] = [Pj, Pk] = 0 and [Qj, Pk] = i~� j

k for all j, k = 1, . . . , n, and for
all  2 D, and

3. Q1, . . . ,Qn, P1, . . . , Pn are all essentially self-adjoint on D.

In this case we say that the unique self-adjoint extensions of Q1, . . . ,Qn, P1, . . . , Pn,
denoted by the same symbols, satisfy the canonical commutation relations. The
Schrödinger realization of h2n+1 is defined as follows. Let H = L2(Rn) and take D
to be the Schwartz space S(Rn). Define Qj and Pk on S(Rn) by

(Qj )(q) = (Qj )(q1, . . . , qn) = q j (q1, . . . , qn), j = 1, . . . , n,

and

(Pk )(q) = (Pk )(q1, . . . , qn) = �i~
@

@qk  (q1, . . . , qn), k = 1, . . . , n.

Then S(Rn) is invariant under all of the Qj and Pk for j, k = 1, . . . , n and each of
these is essentially self-adjoint on S(Rn) and satisfies the Heisenberg commutation
relations there.

Each of the self-adjoint operators Qj : D(Qj) ! L2(Rn) and Pk : D(Pk) !
L2(Rn) determines a unique strongly continuous 1-parameter group of unitary oper-
ators on L2(Rn) which we will denote by

{Uk
t }t2R = {eitPk }t2R

and

{V j
s }s2R = {eisQ j }s2R,

respectively and these satisfy

U j
t V j

s = ei~tsV j
s U j

t (A.1)

if k = j and, if k , j,
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Uk
t V j

s = V j
s Uk

t (A.2)

on L2(Rn) for all s, t 2 R. In addition,

U j
t Uk

s = Uk
s U j

t and V j
t Vk

s = Vk
s V j

t (A.3)

on L2(Rn) for all s, t 2 R and all j, k = 1, . . . , n.
Manufacturing realizations of Heisenberg algebras is most e�ciently done by

reversing the procedure in Example A.0.1. Let {Uk
t }t2R and {V j

s }s2R, j, k = 1, . . . , n,
be a collection of 2n strongly continuous 1-parameter groups of unitary operators
on the complex, separable Hilbert space H that satisfy the so-called Weyl rela-
tions (A.1), (A.2), and (A.3). By Stone’s Theorem there exists a unique family of
self-adjoint operators P1, . . . , Pn,Q1, . . . ,Qn on H for which U1

t = eitP1 , . . . ,Un
t =

eitPn ,V1
s = eisQ1

, . . . ,Vn
s = eisQn . One can then prove that there is a dense linear

subspace D of H with D ✓ D(Pk) and D ✓ D(Qj) for all j, k = 1, . . . , n such that

1. Qj : D! D and Pk : D! D for all j, k = 1, . . . , n,
2. [Qj,Qk] = [Pj, Pk] = 0 and [Qj, Pk] = i~� j

k for all j, k = 1, . . . , n, and for
all  2 D, and

3. Q1, . . . ,Qn, P1, . . . , Pn are all essentially self-adjoint on D

so we have a realization of h2n+1 on H. Thus, realizations of the Heisenberg alge-
bra h2n+1 on H can be constructed from families of 1-parameter groups of unitary
operators on H that satisfy the Weyl relations.

Remark A.0.1. Such families of 1-parameter groups, in turn, can be constructed
from a strongly continuous, unitary representation ⇡ : H2n+1 ! U(H) of the Heisen-
berg group on H by computing its infinitesimal version d⇡ and evaluating i~ d⇡ on
the generators of h2n+1. This is all described in more detail for the case of h3 in
Section 7.2 of [Nab5] (see, in particular, Theorem 7.2.1 and the discussion that fol-
lows). Notice that in the case of h3 there are just two 1-parameter groups of unitary
operators {Ut}t2R = {eitP}t2R and {Vs}s2R = {eisQ}s2R so that (A.2) is not relevant
and (A.3) follows from the group property. The Weyl relations therefore reduce to
UtVs = ei~tsVsUt.

Let {Uk
t }t2R and {V j

s }s2R, j, k = 1, . . . , n, be a collection of 2n strongly continuous
1-parameter groups of unitary operators on H that satisfies the Weyl relations. We
will say that this collection is irreducible if the only closed linear subspaces of H
that are invariant under every Uk

t and every V j
s are the subspace consisting of the zero

vector alone and all of H. This is true, for example, for the Schrödinger realization.
One of the most fundamental results in the foundations of quantum mechanics is
a theorem of Stone and von Neumann which asserts that every realization of h2n+1
that arises from such an irreducible family is unitarily equivalent to the Schrödinger
realization.

Theorem A.0.1. (Stone-von Neumann Theorem) Let {Uk
t }t2R and {V j

s }s2R, j, k =
1, . . . , n, be an irreducible collection of 2n strongly continuous 1-parameter groups
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of unitary operators on the complex, separable Hilbert space H that satisfies the
Weyl relations (A.1), (A.2), and (A.3) . Let P1, . . . , Pn,Q1, . . . ,Qn be the unique self-
adjoint operators on H for which U1

t = eitP1 , . . . ,Un
t = eitPn ,V1

s = eisQ1
, . . . ,Vn

s =
eisQn . Let D be the dense linear subspace of H on which P1, . . . , Pn,
Q1, . . . ,Qn give a realization of h2n+1 on H. Then there exists a unitary isomorphism
T of H onto L2(Rn) such that, on T (D),

T PjT�1 (q1, . . . , qn) = �i~
@

@q j (q1, . . . , qk), j = 1, . . . , n

and

T QkT�1 (q1, . . . , qn) = qk (q1, . . . , qn), k = 1, . . . , n.

Remark A.0.2. The uniqueness assertion in Theorem A.0.1 depends crucially on the
assumption that the realization of h2n+1 comes from a family of 1-parameter groups
of unitary operators that satisfy the Weyl relations. Such realizations are said to be
integrable. Not every realization of h2n+1 is integrable and for these uniqueness fails.
We should point out also that it has been implicit in our discussion that ~ is to be
regarded as a fixed positive constant. If one thinks of ~ as a positive parameter, then
di↵erent values give di↵erent realizations (Exercise 7.2.21 of [Nab5]). There is also
a version of the Stone-von Neumann Theorem in which the irreducibility condition
is dropped. In this case H splits into an orthogonal direct sum of closed subspaces
on each of which the realization is unitarily equivalent to the Schrödinger realization
(see Theorem 7.2.7 of [Nab5]).

At this point we have rather precise information about realizing the classical
canonical commutation relations as self-adjoint operators on a Hilbert space and
we should pause to ask ourselves how close this has gotten us to Dirac’s program
for quantizing classical mechanical systems. Sadly, we must admit that the answer
is, “not very close.” Roughly speaking, Dirac asked for a realization of the alge-
bra C1(T ⇤Rn;R) of classical observables and, at this point, we have managed to
do this only for the classical observables that live in the Heisenberg subalgebra of
C1(T ⇤Rn;R) and these are all linear in the canonical coordinates. Physically, this
is not a particularly interesting class of observables. Classical Hamiltonians, for ex-
ample, are often quadratic. What we need to do then is try to extend our realizations
of h2n+1 to larger Lie subalgebras of C1(T ⇤Rn;R) that contain the observables we
are interested in quantizing. One would hope that in this way one could work all the
way up to C1(T ⇤Rn;R) itself. We will see, however, that these hopes are dashed.

In order to suppress a certain amount of notational clutter, but none of the essen-
tial ideas, we will limit our remarks to the n = 1 case (Section 7.2 of [Nab5] contains
a much more detailed discussion of this case). Begin by considering the linear sub-
space P2(q, p) of C1(R2;R) spanned by {1, q, p, q2, p2, qp}. These are precisely the
quadratic classical observables. Computing Poisson brackets gives, in addition to
the commutation relations for h3,
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{qp, p} = p, {qp, q} = �q, {p2, q} = �2p, {q2, p} = 2q, (A.4)

and
⇢q2

2
,

p2

2

�
= qp, {qp, p2} = 2p2, {qp, q2} = �2q2. (A.5)

In particular, P2(q, p) is closed under Poisson brackets and is therefore a Lie subal-
gebra of C1(R2;R).

Remark A.0.3. In Section 7.2 of [Nab5] it is shown that P2(q, p) is isomorphic to
the so-called Jacobi algebra gJ = sl(2,R) ⇥⇡ h3 which is a semi-direct product of
sl(2,R) and h3.

We can view the problem of quantizing the quadratic classical observables as
that of extending the Schrödinger realization of h3 to P2(q, p). The Schrödinger
realization sends 1 to the identity operator on L2(R) and, on S(R) ✓ L2(R), is given
by

q! Q : (Q )(q) = q (q)

p! P : (P )(q) = �i~
d

dq
 (q)

and satisfies

{p, q}! � i
~

[P,Q].

What we must do is define appropriate images for q2, p2 and qp in such a way that
{ , }! � i

~ [ , ]. There is certainly an obvious way to start the process.

q2 ! Q2 : (Q2 )(q) = q2 (q)

p2 ! P2 : (P2 )(q) = �i~
d

dq
[(P )(q)] = �~2 d2

dq2 (q)

The element qp presents a problem, however. One might simply try qp ! QP. On
the other hand, in C1(T ⇤R;R), qp = pq so one might just as well try qp = pq !
PQ and these are not the same. This is the infamous operator ordering problem of
quantization. For quadratic observables the issue is not so serious since we can think
of qp as

qp =
1
2

(qp + pq)

and take

qp! 1
2

(QP + PQ) = �i~ ( q
d
dq
+

1
2

)
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which is symmetric in Q and P. One now checks that the operators Q2, P2, and
1
2 (QP+ PQ) are essentially self-adjoint on S(R) and that the commutation relations
(A.4) and (A.5) are satisfied there so we have the desired realization of the quadratic
classical observables as self-adjoint operators on L2(R).

Needless to say, the operator ordering problems that gave us pause in this con-
struction become increasingly severe as the degree of the polynomials increases,
but it is not altogether clear that they cannot be somehow resolved as they were for
P2(q, p). Nevertheless, they cannot. The following is Theorem 7.2.9 of [Nab5].

Theorem A.0.2. (Groenewold-Van Hove Theorem) Let O be a Lie subalgebra of
C1(T ⇤R;R) that properly contains the Lie subalgebra P2(q, p) generated by
{1, q, p, q2, p2, qp}. Then there does not exist a linear map R from O to the self-
adjoint operators on L2(R) preserving some fixed dense linear subspace D ◆ S(R)
and satisfying all of the following.

R(1) = idL2(R)

R( { f , g} ) = � i
~

[R( f ),R(g)]� 8 f , g 2 O

R(q) = Q [ (Q )(q) = q (q)8 2 S(R) ]

R(p) = P [ (P )(q) = �i~
d

dq
 (q)8 2 S(R) ]

R(q2) = Q2 [ (Q2 )(q) = q2 (q)8 2 S(R) ]

R(p2) = P2 [ (P2 )(q) = �~2 d2

dq2 (q)8 2 S(R) ].

This is, perhaps, a bit depressing. However, the Groenewold-Van Hove Theorem
does not imply that it is impossible to quantize, say, quartic polynomials such as
q2 p2 in a manner consistent with the Schrödinger quantization of P2(q, p). It says
only that the assumptions we have made do not uniquely determine the quantization
and it is up to us to use whatever additional information is available to make a choice
or to adapt our requirements. Quantization is, as they say, an art not a science and
certainly not a theorem. In the next section we will apply the quantization map
from the Jacobi algebra P2(q, p) ✓ C1(T ⇤R;R) to the self-adjoint operators on
L2(R) to the two simplest examples of classical mechanical systems with quadratic
Hamiltonians, that is, the free particle and the harmonic oscillator.





Appendix B
Free Particles and Harmonic Oscillators

In this section we will collect together material on the two most basic examples
of quantized classical mechanical systems. The material is taken from Sections 7.3
and 7.4 of [Nab5], but many of the functional analytic preliminaries will be found
in Chapter 5 of [Nab5].

A classical free particle of mass m moving in one dimension has configuration
spaceR and phase space T ⇤R = R2 with coordinates q and (q, p), respectively. The
classical Hamiltonian is 1

2m p2 which lives in the quadratic Lie subalgebra P2(q, p) of
C1(T ⇤R;R) generated by 1, q, p, q2, p2 and qp. The quantum phase space is taken
to be L2(R) and the map from P2(q, p) to the self-adjoint operators on L2(R) con-
structed in Appendix A assigns to 1, q, p and 1

2m p2 the operators I = idL2(R),Q, P
and H0 =

1
2m P2. On the Schwartz space S(R) these are given by (Q )(q) = q (q),

(P )(q) = �i~ d
dq (q), and (H0 )(q) = � ~2

2m
d2

dq2 (q), respectively, and they are all es-
sentially self-adjoint on S(R). The domain of H0 is the set of all  2 L2(R) for which
� is in L2(R), where � is the second derivative of  thought of as a tempered dis-
tribution (Example 5.2.14 of [Nab5]), and the spectrum of H0 is �(H0) = [0,1)
(Example 5.4.4 of [Nab5]). From the latter and Postulate QM2 it follows that, just
as in the classical case, the energy of a free quantum particle can assume any non-
negative real value, that is, the energy is not “quantized”. According to Postulate
QM4, an initial state  (q, 0) of the free particle will evolve in time according to

 (q, t) = e�itH0/~ (q, 0).

This evolution is computed explicitly for  (q, 0) = 1
⇡1/4 e�q2/2ei↵q in Example 7.3.1 of

[Nab5]. More generally, one can represent the time evolution in terms of an integral
kernel. The following is Theorem 7.3.1 of [Nab5].

Theorem B.0.1. Let H0 = � ~
2

2m� be the free particle Hamiltonian on L2(R). Then
H0 is self-adjoint on D(H0) =

�
 2 L2(R) : � 2 L2(R)

 
, where � is the distribu-

tional Laplacian. For any  0 2 L2(R)

35
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�
e�itH0/~ 0

�
(q) =

Z

R

r
m

2⇡~ti
emi(q�x)2/2~t 0(x) dx,

where
p

i = e⇡i/4 = 1p
2

(1 + i) and, if  0 2 L2(R) � L1(R), the integral must be
regarded as an integral in the mean, that is,

Z

R

r
m

2⇡~ti
emi(q�x)2/2~t 0(x) dx = lim

M!1

Z

[�M,M]

r
m

2⇡~ti
emi(q�x)2/2~t 0(x) dx,

where the limit is in L2(R). If  0(q) =  (q, t0) is the state of the free particle at
t = t0, then its state at time t is

 (q, t) = e�i(t�t0)H0/~( (q, t0)) =
Z

R

K(q, t; x, t0) (x, t0) dx, (B.1)

where

K(q, t; x, t0) =
r

m
2⇡~(t � t0)i

emi(q�x)2/2~(t�t0) (B.2)

The function K(q, t; x, t0) is called the propagator, or integral kernel for the free
particle Hamiltonian H0, or simply the Schrödinger kernel for H0. Physicists inter-
pret

��� K(q, t; x, t0)
���2 as the conditional probability of finding the particle at q 2 R

at time t provided it was detected at the point x 2 R at time t0. K(q, t; x, t0) itself
is interpreted as the probability amplitude for getting from x at time t0 to q at time
t. Thus, for fixed t0 and t, the integral in (B.1) expresses the probability amplitude
 (q, t) for detecting the particle at q at time t as the (continuous) weighted sum of
the amplitudes  (x, t0) over all x 2 R, the weight being just the propagator. Intu-
itively, there is a contribution to the amplitude  (q, t) from every possible location
of the particle at time t0.

Now hold t0 = 0 fixed and define K0 : R ⇥ (0,1) ⇥R! C by

K0(q, t, x) = K(q, t; x, 0) =
r

m
2⇡~ti

emi(q�x)2/2~t.

Then we can write

 (q, t) =
Z

R

K0(q, t, x) 0(x) dx,

where  0(x) =  (x, 0). For each fixed x, K0(q, t, x) satisfies the free Schrödinger
equation

i
@K0(q, t, x)

@t
= � ~

2m
@2K0(q, t, x)

@q2 (B.3)

on R ⇥ (0,1) (see Exercise 7.3.7 of [Nab5]) and the initial condition
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lim
t!0+

Z

R

K0(q, t, x) 0(x) dx =  0(q). (B.4)

In the language of partial di↵erential equations one would say that K0(q, t, x) is the
fundamental solution to the free Schrödinger equation.

The classical harmonic oscillator has configuration space R and phase space
T ⇤R = R2 with coordinates q and (q, p), respectively. The classical Hamiltonian
is 1

2m p2 + m!2

2 q2, where m and ! are positive constants. The quantum phase space is
taken to be L2(R). Since the Hamiltonian lives in the Jacobi subalgebra P2(q, p) of
the Lie algebra C1(T ⇤R;R) of classical observables we can apply the quantization
map described in Appendix A to obtain its quantum analogue

HB =
1

2m
P2 +

m!2

2
Q2

which, on S(R), is given by

HB
���
S(R) = �

~2

2m
d2

dq2 +
m!2

2
q2.

Remark B.0.1. The subscript B is intended to distinguish this bosonic harmonic
oscillator from the fermionic and supersymmetric harmonic oscillators that are dis-
cussed in Chapter 9 of [Nab5].

In Example 5.3.1 of [Nab5] it is shown that HB is essentially self-adjoint on S(R).
This followed from the fact that, on S(R), it is symmetric and has a discrete set of
eigenvalues

En = (n +
1
2

)~!, n = 0, 1, 2, . . .

with eigenfunctions  n(q), n = 0, 1, 2, . . ., that live in S(R) and form an orthonormal
basis for L2(R). Specifically,

 n(q) =
1p
2nn!

✓m!
~⇡

◆1/4
e�m!q2/2~Hn

✓ r
m!
~

q
◆
,

where

Hn(x) = (�1)nex2 dn

dxn (e�x2
)

is the nth Hermite polynomial. The eigenvalues En comprise the entire spectrum

�(HB) = {En}1n=0 = { (n +
1
2

)~! }1n=0
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of HB (Example 5.4.5 of [Nab5]) and all of the eigenspaces are 1-dimensional. These
eigenvalues are therefore all of the allowed energy levels of the quantum oscillator
so, unlike the free particle, the energy spectrum of the harmonic oscillator is discrete
(quantized). The smallest of these eigenvalues is E0 =

1
2~! and the corresponding

eigenstate  0 is called the ground state of the oscillator. Notice that the lowest al-
lowed energy level is not zero.

Exercise B.0.1. Show that, for the harmonic oscillator, the expected value hQi 0 =
h 0,Q 0i of the position operator Q in the ground state  0 is zero, but its variance
�2
 0

(Q) = kQ 0k2 � hQi2 0
is nonzero.

Remark B.0.2. The conclusion of Exercise B.0.1 is that the position observable
fluctuates about its expected value in the ground state. The same is true in any energy
eigenstate  n.

The remaining  n, n = 1, 2, . . ., are called excited states. Writing  2 L2(R)
as  =

P1
n=0h n, i n, the domain D(HB) of HB is just the set of  for whichP1

n=0 Enh n, i n converges in L2(R), that is, for which

1X

n=0

E2
n | h n, i |2 < 1.

Since 0 is not an eigenvalue, HB is invertible. Indeed, its inverse is a bounded oper-
ator on all of L2(R) given by

H�1
B � =

1X

n=0

1
En
h n, �i n

(see (5.40) of [Nab5]). In Example 5.5.4 of [Nab5] it is shown that H�1
B is a compact

operator.
The evolution operator e�itHB/~ is given by

e�itHB/~ =
1X

n=0

h n, ie�(i/~)Ent 

for any  2 L2(R). The time evolution of an initial state  (q, t0) can be written as

 (q, t) =
1X

n=0

✓ Z

R

 n(x) (x, t0)dx
◆

e�(i/~)En(t�t0) n(q)

which, at least for su�ciently nice initial data, can be written in terms of an integral
kernel as
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 (q, t) =
Z

R

K(q, t; x, t0) (x, t0)dx,

where

K(q, t; x, t0) =
1X

n=0

e�(i/~)En(t�t0) n(q) n(x) =
1X

n=0

e�i(n+ 1
2 )!(t�t0) n(q) n(x)

(see (6.12) of [Nab5]). K(q, t; x, t0) is called the propagator, or integral kernel for
the harmonic oscillator, or simply the Schrödinger kernel for HB. A closed form
expression for K(q, t; x, 0), called the Feynman-Souriau Formula, is

K(q, t; x, 0) =
r

m!
2⇡~ |sin!t| e�i( ⇡

2 )( 1
2+b !t

⇡ c ) exp
✓ i
~

m!
2 sin!t

⇥
(q2 + x2) cos!t � 2qx

⇤◆

which is valid whenever !t is not an integer multiple of ⇡. This is derived from
Mehler’s Formula in Section 7.4 of [Nab5] and by evaluating the Feynman path
integral in Section 8.3 of [Nab5]. Example 7.4.1 of [Nab5] computes an explicit
time evolution from the Feynman-Souriau Formula. As for the free particle one
defines

KB(q, t, x) = K(q, t; x, 0) (B.5)

to obtain a fundamental solution to the Schrödinger equation for the harmonic os-
cillator.

The analysis of the quantum harmonic oscillator is facilitated by the introduction
of the so-called lowering and raising operators b and b† defined by

b =
1p

2m!~
(m!Q + iP)

and

b† =
1p

2m!~
(m!Q � iP),

respectively. These are adjoints of each other

hb�, i = h�, b† i and hb† , �i = h , b�i

and satisfy various algebraic identities, of which we will record a few (details and
additional results are available in Section 5.3 of [Nab5]). Designating them as low-
ering and raising operators is motivated by
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b n =
p

n n�1, n = 1, 2, . . . and b† n =
p

n + 1 n+1, n = 0, 1, 2, . . .

so that b lowers and b† raises the energy level of the eigenstates of the harmonic
oscillator (b annihilates the ground state, that is, b 0 = 0). The excited states can all
be obtained from the ground state by repeated application of the raising operator.

 n =
1p
n!

(b†)n 0

On S(R) we have [P,Q] = �i~ and it follows from this that

[b, b†] = bb† � b†b = 1

(see (5.32 of [Nab5])). Defining the number operator NB by NB = b†b one obtains

NB n = n n,

HB = ~!(NB +
1
2

),

and various commutation relations such as

[NB, b†] = b† and [NB, b] = �b,

and

[HB, b†] = ~!b† and [HB, b] = �~!b.

Remark B.0.3. We will see that operators analogous to b and b† exist in quantum
field theory where they are called annihilation operators and creation operators be-
cause they are viewed as annihilating and creating particles (more precisely, quanta)
of a particular energy. The eigenvalues of the number operator NB count the number
of such quanta; hence the name.

Just for reference we should also record how to retrieve the position Q and mo-
mentum P operators from the lowering b and raising b† operators.

Q =

r
~

2m!
(b† + b)

P = i

r
m!~

2
(b† � b)

We will conclude this section by describing a system consisting of a finite number
of harmonic oscillators. We will need some basic information about Hilbert space
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tensor products available, for example, in Chapter II, Section 6, of [Prug] or Sec-
tions II.4 and VIII.10 of [RS1]. Thus, we have positive constants m1, . . . ,mN and
!1, . . . ,!N . We will denote by q1, . . . , qN the spatial coordinates for the N oscilla-
tors and by L2(R, dq1), . . . , L2(R, dqN) the Hilbert spaces of these oscillators. Then
the Hilbert space H(N) of the system is taken to be the Hilbert space tensor product

H(N) = L2(R, dq1) ⌦ · · · ⌦ L2(R, dqN).

This can be identified with

L2(RN , dNq),

where q = (q1, . . . , qN) and dNq = dq1 · · · dqN is the Lebesgue measure on RN .

Remark B.0.4. Specifically, the identification is accomplished in the following way.
Each �1 ⌦ · · · ⌦ �N in L2(R, dq1) ⌦ · · · ⌦ L2(R, dqN) gives rise to an element of
L2(RN , dNq), also denoted �1 ⌦ · · · ⌦ �N , that is defined by

( �1 ⌦ · · · ⌦ �N )(q1, . . . , qN) = �1(q1) · · · �N(qN).

This extends by linearity to the algebraic tensor product of the L2(R, dqk) and this
is dense in L2(R, dq1) ⌦ · · · ⌦ L2(R, dqN). One then shows that this linear map on
the algebraic tensor product extends uniquely to a unitary map of L2(R, dq1)⌦ · · ·⌦
L2(R, dqN) onto L2(RN , dNq); this is proved, for example, in Theorem 6.9, Chapter
II, of [Prug].

For each k = 1, . . . ,N we have an orthonormal basis

 (k)
n (qk) =

1p
2nn!

✓mk!k

~⇡

◆1/4
e�mk!k(qk)2/2~Hn

✓ r
mk!k

~
qk

◆
, n = 0, 1, 2, . . .

for L2(R, dqk) and these give an orthonormal basis
⇢
 n1···nN =  

(1)
n1
⌦ · · · ⌦  (N)

nN
: n1, . . . , nN = 0, 1, 2, . . .

�
(B.6)

for H(N), where, as an element of L2(RN , dNq),

( (1)
n1
⌦ · · · ⌦  (N)

nN
) (q1, . . . , qN) =  (1)

n1
(q1) · · ·  (N)

nn
(qN).

These are all in the Schwartz space S(RN). An element of H(N) of the form �1 ⌦
· · · ⌦ �N and of norm one is interpreted physically as a state of the system in which
the kth oscillator is in the state �k for each k = 1, . . . ,N. Other states arising from
superpositions of these and limits occur as well.

To define the Hamiltonian H(N)
B on H(N) we will need some information about

operators on tensor products. For each k = 1, . . . ,N we will denote by Ik,Qk, Pk,
and Hk the following operators on L2(R, dqk). Ik is the identity operator. Qk is the



42 B Free Particles and Harmonic Oscillators

kth-position operator, that is, the self-adjoint extension of multiplication by qk. Pk
is the kth-momentum operator, that is, the self-adjoint extension of �i~ @k, where
@k = @/@qk. Hk is the kth-oscillator Hamiltonian, that is, the self-adjoint extension
of

� ~
2

2mk
@2

k +
mk!2

k

2
(qk)2 ,

where @2
k = @

2/@(qk)2. To put these together into operators on H(N) we will need the
following result (see the Corollary in Section VIII.10 of [RS1]).

Theorem B.0.2. Let H1, . . . ,HN be separable, complex Hilbert spaces. For each
k = 1, . . . ,N let Ak : D(Ak) ! Hk be a self-adjoint operator on Hk that is essen-
tially self-adjoint on the dense linear subspace Dk ✓ D(Ak). Let D be the linear
span of the set of all �1 ⌦ · · · ⌦ �N with �k 2 Dk for k = 1, . . . ,N. Then D is dense
in H1 ⌦ · · · ⌦HN and if we define

A1 ⌦ · · · ⌦ AN : D! H1 ⌦ · · · ⌦HN (B.7)

by setting

(A1 ⌦ · · · ⌦ AN)(�1 ⌦ · · · ⌦ �N) = A1�1 ⌦ · · · ⌦ AN�N

and extending by linearity to D, then A1 ⌦ · · · ⌦ AN is essentially self-adjoint on D.
Moreover, if I1, . . . , IN are the identity operators on H1, . . . ,HN, respectively, then

A1 ⌦ I2 ⌦ · · · ⌦ IN + I1 ⌦ A2 ⌦ I3 ⌦ · · · ⌦ IN + · · · + I1 ⌦ · · · ⌦ IN�1 ⌦ AN (B.8)

is also essentially self-adjoint on D.

As usual, we will use the same symbols for the unique self-adjoint extensions of
the operators (B.7) and (B.8). Notice that (B.8) is really just the sum of A1, . . . , AN
with each of these operators thought of as living on H1 ⌦ · · · ⌦HN so it is common
practice to write it simply as

A1 + · · · + AN

and we will adhere to the custom. In particular, to define the Hamiltonian (total en-
ergy) of our system of N harmonic oscillators we will simply add the Hamiltonians
of the individual oscillators, that is, we take H(N)

B to be the unbounded, self-adjoint
operator on H(N)

B defined by

H(N)
B = H1 + · · · + HN .

As an operator on L2(RN , dNq) one often see this written
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H(N)
B =

NX

k=1

✓
� ~

2

2mk
@2

k +
mk!2

k

2
(qk)2

◆

with the self-adjoint extension taken for granted.

Remark B.0.5. Notice that there is a physical assumption buried in this definition.
Since the total energy of the system is just the sum of the energies of the individual
oscillators we are assuming none of the oscillators interacts with any of the others,
that is, the oscillators are independent or, in the terminology of physics, uncoupled.

Exercise B.0.2. Show that, if  n1···nN =  
(1)
n1 ⌦ · · ·⌦ (N)

nN is an element of the orthonor-
mal basis (B.6) for H(N)

B , then

H(N)
B  n1···nN =

✓
n1 + · · · + nN +

N
2

◆
 n1···nN

so  n1···nN is an eigenfunction of the Hamiltonian with eigenvalue, that is, energy
n1 + · · · + nN +

N
2 . The ground state of the system is

 0···0(q) =  0···0(q1, . . . , qN) =
✓m1!1

~⇡

◆1/4
· · ·

✓mN!N

~⇡

◆1/4
exp

✓
�

NX

k=1

mk!k(qk)2/2~
◆

(B.9)

and all of the remaining  n1···nN are excited states.

Next we define, for each k = 1, . . . ,N, lowering and raising operators bk and b†k
on H(N)

B by

bk =
1p

2m!k~
(m!kQk + iPk)

and

b†k =
1p

2m!k~
(m!kQk � iPk),

respectively. Then

Qk =

s
~

2m!k
(b†k + bk)

Pk = i

r
m!k~

2
(b†k � bk).
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A number of basic properties of these raising and lowering operators follow di-
rectly from those of the corresponding 1-dimensional operators. For example, on
the Schwartz space S(RN) in L2(RN , dNq) the operators bk and b†k satisfy the com-
mutation relations

[b j, bk] = [b†j , b
†
k] = 0 and [b j, b†k] = � jkI, j, k = 1, . . . ,N, (B.10)

where I is the identity operator. The action of bk and b†k on the basis vectors  n1···nN

is given by

bk n1···nk ···nN =
p

nk  n1···(nk�1)···nN

and

b†k n1···nk ···nN =
p

nk + 1 n1···(nk+1)···nN .

The excited states  n1···nk can all be obtained from the ground state by repeated
application of the raising operators b†k . Specifically,

 n1···nN =
(b†1)n1 · · · (b†N)nN

p
n1! · · · nN!

 0···0.

Defining the kth-number operator by

Nk = b†kbk

one finds that the Hamiltonian can be written

H(N)
B =

NX

k=1

~!k

✓
b†kbk +

1
2

◆
=

NX

k=1

~!k

✓
Nk +

1
2

◆
.

We will see that, for the purposes of quantum field theory, one really requires a
system of infinitely many harmonic oscillators and, as the 1

2 in the preceding ex-
pression for the Hamiltonian should make clear, this is likely to present some rather
serious technical di�culties. We will take this up again in Section ?? where we
transplant all of this information to what is called “bosonic Fock space”.
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innerhalb der Quantenmechanik, Zeitschrift für Physik, 45, 1927, 455-457.
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Lop. Lopuszánski, J., An Introduction to Symmetry and Supersymmetry in Quantum Field
Theory, World Scientific, Singapore, 1991.

Lucr. Lucritius, The Nature of Things, Translated with Notes by A.E. Stallings, Penguin
Classics, New York, NY, 2007.

Mack1. Mackey, G.W., Quantum Mechanics and Hilbert Space, Amer. Math. Monthly, Vol 64,
No 8, 1957, 45-57,

Mack2. Mackey, G.W., Mathematical Foundations of Quantum Mechanics, Dover Publications,
Mineola, NY, 2004.

MacL. Mac Lane, S., Hamiltonian Mechanics and Geometry, Amer. Math. Monthly, Vol. 77,
No. 6, 1970, 570-586.

Mar1. Marsden, J., Darboux’s Theorem Fails for Weak Symplectic Forms, Proc. Amer. Math.
Soc., Vol. 32, No. 2, 1972, 590-592.

Mar2. Marsden, J., Applications of Global Analysis in Mathematical Physics, Publish or Perish,
Inc., Houston, TX, 1974.

Mar3. Marsden, J., Lectures on Geometrical Methods in Mathematical Physics, SIAM,
Philadelphia, PA, 1981.

Mazz1. Mazzucchi, S., Feynman Path Integrals, in Encyclopedia of Mathematical Physics, Vol. 2,
307-313, J-P Françoise, G.L. Naber, and ST Tsou (Editors), Academic Press (Elsevier),
Amsterdam, 2006.

Mazz2. Mazzucchi, S., Mathematical Feynman Path Integrals and Their Applications World
Scientific, Singapore, 2009.

MS. McDu↵, D. and D. Salamon, Introduction to Symplectic Topology, Oxford University
Press, Oxford, England, 1998.

MR. Mehra, J. and H. Rechenberg, The Historical Development of Quantum Theory, Volume
2, Springer, New York, NY, 1982.

Mess1. Messiah, A., Quantum Mechanics, Volume I, North Holland, Amsterdam, 1961.



References 51

Mess2. Messiah, A., Quantum Mechanics, Volume II, North Holland, Amsterdam, 1962.
MTW. Misner, C.W., K.S. Thorne and J.A. Wheeler, Gravitation, W.H. Freeman and Company,

San Francisco, CA, 1973.
MP. Mörters, P. and Y. Peres, Brownian Motion, Cambridge University Press, Cambridge,

England, 2010.
Mos. Moser, J., On the Volume Elements on a Manifold, Trans. Amer. Math. Soc., 120, 1965,

286-294.
Nab1. Naber, G., Spacetime and Singularities: An Introduction, Cambridge University Press,

Cambridge, England, 1988.
Nab2. Naber, G., Topology, Geometry and Gauge Fields: Foundations, Second Edition,

Springer, New York, NY, 2011.
Nab3. Naber, G., Topology, Geometry and Gauge Fields: Interactions, Second Edition,

Springer, New York, NY, 2011.
Nab4. Naber, G., The Geometry of Minkowski Spacetime: An Introduction to the Mathematics

of the Special Theory of Relativity, Second Edition, Springer, New York, NY, 2012.
Nab5. Naber, G., Foundations of Quantum Mechanics: An Introduction to the Physical Back-

ground and Mathematical Structure, Available at http://gregnaber.com.
Nab6. Naber, G., Positive Energy Representations of the Poincaré Group: A Sketch of the Posi-
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Prug. Prugovečki, E., Quantum Mechanics in Hilbert Space, Academic Press, Inc., Orlando,
FL, 1971.

Ratc. Ratcli↵e, J.G., Foundations of Hyperbolic Manifolds, Second Edition, Springer, New
York, NY, 2006.



52 References

RS1. Reed, M. and B. Simon, Methods of Modern Mathematical Physics I: Functional Analy-
sis, Academic Press, Inc., Orlando, FL, 1980.

RS2. Reed, M. and B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis,
Self-Adjointness, Academic Press, Inc., Orlando, FL, 1975.

RiSz.N. Riesz, F. and B. Sz.-Nagy, Functional Analysis Dover Publications, Inc., Mineola, NY,
1990.

Rob. Robertson, H.P., A General Formulation of the Uncertainty Principle and its Classical
Interpretation, Phys. Rev. 34(1929), 163-164.

Ros. Rosay, J-P., A Very Elementary Proof of the Malgrange-Ehrenpreis Theorem, Amer.
Math. Monthly, Vol. 98, No. 6, Jun.-Jul., 1991, 518-523.

Rosen,S. Rosenberg, S., The Laplacian on a Riemannian Manifold, Cambridge University Press,
Cambridge, England, 1997.

Rosen,J. Rosenberg, J., A Selective Hisory of the Stone-von Neumann Theorem, Contemporary
Mathematics, 365, Amer. Math. Soc., Providence, RI, 2004, 331-353.

Roy. Royden, H.L., Real Analysis, Second Edition, Macmillan Co., New York, NY, 1968.
Roz. Rozema, L.A., A. Darabi, D.H. Mahler, A. Hayat, Y. Soudagar, and A.M. Steinberg, Vi-

olation of Heisenbergs Measurement-Disturbance Relationship by Weak Measurements,
Physical Review Letters, 109, 100404(2012), 1-5.

Rud1. Rudin, W., Fourier Analysis on Groups, Interscience Publishers, New York, NY, 1962.
Rud2. Rudin, W., Functional Analysis, McGraw-Hill, New York, NY, 1973.
Rud3. Rudin, W., Real and Complex Analysis, Third Edition, McGraw-Hill Book Company,

New York, 1987.
Ryd. Ryder, L.H., Quantum Field Theory, Second Edition, Cambridge University Press,

Cambridge, England, 2005.
Sak. Sakuri, J.J. and J. Napolitano, Modern Quantum Mechanics, Second Edition, Addison-

Wesley, Boston, MA, 2011.
Schl. Schlosshauer, M., Decoherence, the Measurement Problem, and Interpretations of Quan-

tum Mechanics, Rev. Mod. Phys., 76(4), 2005, 1267-1305.
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